
Case Study

After an easy migration

to NCache, it has begun

to act like the glue that

holds our application together. And

the various features it offers have

been a real bonus, especially the

queues, that we have used exces-

sively.

�

Enterprise Application
Support Analyst

1

European Defense Department

NCache allows this organization to
maintain high availability and accelerate the

performance of their Task Management Application.

2

Introduction

Country or Region:
Europe

Company Profile:

Industry:
Military Defense

This is a European defense depart-
ment that works to create a
connection between several
nations, allowing them to consult
and collaborate on security projects
while coordinating international
crisis management activities.

- Enterprise Application
Support Analyst

Such organizations demand high availability, data consistency, and easy
task management. This organization in particular has designed a tracking
application for the use of their employees to manage information and
tasks between different departments. The employees log in to the appli-
cation and enter their daily tasks. Each relevant department can super-
vise employees and check their task statuses. The firm previously used
Redis for their development processes but faced limitations in deploying
it to their servers. Additionally, as a leading contributor to peace on the
international stage, they wanted to enhance their tracking application to
be notified about any changes occurring in real-time.

Application Pain Points

They require a good caching mechanism. They evaluated Redis. At an
early stage, they found out that Redis was not fulfilling their data struc-
ture requirements meaning they could not deploy Redis in their HQ.
Additionally, migration to Redis wasn’t as easy as one might have
thought, Redis wasn’t fulfilling the organization’s technical requirements.
Redis is developed in C++ on Linux. And, it is not officially supported on
Windows. As the organization’s application has been built using .NET 6,
integrating a product that is not .NET native can cause issues.

“After an easy migration to NCache, it has begun to act like the
glue that holds our application together. And the various fea-
tures it offers have been a real bonus, especially the queues,
that we have used excessively.”

How NCache Fits into Their Solution?

NCache provides them with a flexible and scalable in-memory solution
for their single-tiered application along with its advanced features. They
are experiencing faster data change notifications to process and work on
it. “It was an easy migration from Redis to NCache and it was pretty
straightforward”, said the Enterprise Application Support Analyst of the
team.

3

Alachisoft Product:
NCache

Customer Needs Met:

• Easy & Straightforward Migration
 /Deployment

• Better Data Structures

• Scalability

• Reduced Database Trips

The application architecture mainly comprises the following components:

• Front-End:
The front-end is designed using the SVELTE JS frame.

• Logic Layer:
The logic layer interacts with the database using the Rest APIs. It uses
.NET Core 6 Web APIs, has SignalR Notification Hubs, and comes with
.NET APIs for SearchService and collaboration services.

• Back-End:
The back-end is based on SQL Server as the data store. Data sources
include SQL Server, ADFS, Sharepoint, and Document Management
Server. The Backing source (NCache Read-Through) is implemented in
this layer which uses .NET 6 with NCache 5.3 SP1.

For a closer look at the application, the Web API contains the Action
service, Notification Hub along with SignalR. NCache acts as a central
hub between different parts of the application. The user logs in using
ADFS (Active Directory Federation Services), goes to the front-end and

They require a good caching mechanism. They evaluated Redis. At an
early stage, they found out that Redis was not fulfilling their data struc-
ture requirements meaning they could not deploy Redis in their HQ.
Additionally, migration to Redis wasn’t as easy as one might have
thought, Redis wasn’t fulfilling the organization’s technical requirements.
Redis is developed in C++ on Linux. And, it is not officially supported on
Windows. As the organization’s application has been built using .NET 6,
integrating a product that is not .NET native can cause issues.

Whatever their application seems to lack, NCache provided the optimal
solutions as the fix.

Unplanned changes or planned maintenance will not affect the applica-
tion’s performance as it is using replicated cache topology - if a node is
down, the other node makes up for it. The organization’s data structure
requirements were fulfilled by NCache Queues which are very intuitive
and easy to implement. From the SignalR backplane to Cache Loader,
backing source provider (Read-Through), and NCache locks; the tracking
application benefits from all these powerful features of NCache.

Moreover, NCache is a .NET native distributed caching solution that can
be deployed on Linux, as well as Windows. This helped them with their
deployment, as Redis only supports Linux. Most .NET applications run on
Windows and now .NET Core applications can run on both Windows and
Linux. Therefore, it has become essential to ensure that their distributed
caches also provide support for both these operating systems. And
NCache as one of the top caching solutions, provides this support.

Application Architectural Overview and
Deployment with NCache

calls the Web API. The Web API is responsible for creating this action and
putting it in the queue inside the NCache. The Action Service performs
multiple operations such as polling the queue, processing tasker object,
etc.

If there is an item present inside the Action Service, it will process it. As
part of the processing, the Action Service also sends the notifications via a
Notification Hub. This Action Service changes the state of the data object
“Tasker”- in case of a change of data state where new data may be added
or previously added data is updated. This helps the users to analyze the
processing and it sends out notifications to all the concerned users affect-
ed by that change. The application also has a collaboration service to
manage tasks using SharePoint.

Currently, the application uses 2 load-balanced servers hosting the Front
end, Logic layer, and NCache. Additionally, there is 1 database server to
support the servers. They have 1 general cache where they store queues

The organization extends the application’s use with the SignalR back-
plane. When multiple users are using the web app, they wait for feedback
on the tasker object. The feedback is provided to them via a Notification
Hub that uses SignalR. This has eliminated the need to refresh the web-
page every time to request new messages.

Real-time ASP.NET web applications can be created with SignalR, where
the server broadcasts updates to all logged-in users as soon as an update
is triggered. By doing this, the response time for user requests for updates
is reduced. NCache offers support for SignalR by providing an extension
to the SignalR provider. The provider has records of all of the application's
concerned web servers.

4

Figure 1 - Architectural Diagram using NCache

calls the Web API. The Web API is responsible for creating this action and
putting it in the queue inside the NCache. The Action Service performs
multiple operations such as polling the queue, processing tasker object,
etc.

If there is an item present inside the Action Service, it will process it. As
part of the processing, the Action Service also sends the notifications via a
Notification Hub. This Action Service changes the state of the data object
“Tasker”- in case of a change of data state where new data may be added
or previously added data is updated. This helps the users to analyze the
processing and it sends out notifications to all the concerned users affect-
ed by that change. The application also has a collaboration service to
manage tasks using SharePoint.

They have been excessively using the Queue data structure provided by
NCache. Queues are stored in the general cache to maintain information
being processed at runtime. The Web API adds a new item to the queue.
Then Action Service polls that queue and if a new item is found then it
performs required processes. The entire Queue is stored in NCache.
Whenever they had to fetch an item, they don’t have to traverse the entire
Queue as that is not only a slow but also a costly process. NCache uses
referencing to get the required item that doesn’t hurt performance.

The Queue data structure comes with different APIs like GetQueue, which
checks whether an item exists or not in the cache with the help of the
Contains method. Similarly, getting the topmost item from a queue,
copying an entire source queue to the one-dimensional array, removing
items from the queue, registering events (key-based and data structures),
locking and unlocking the queues for data consistency- all these are the
other features that NCache offers with the Queue data structure.

Locking Queues for Data Integrity

The organization also brings in the use of locking offered by NCache. For
instance, they may lock the queue whenever the user is reading or writing

The organization extends the application’s use with the SignalR back-
plane. When multiple users are using the web app, they wait for feedback
on the tasker object. The feedback is provided to them via a Notification
Hub that uses SignalR. This has eliminated the need to refresh the web-
page every time to request new messages.

Real-time ASP.NET web applications can be created with SignalR, where
the server broadcasts updates to all logged-in users as soon as an update
is triggered. By doing this, the response time for user requests for updates
is reduced. NCache offers support for SignalR by providing an extension
to the SignalR provider. The provider has records of all of the application's
concerned web servers.

to it, let’s say for about 20 seconds using the Lock API so that data
integrity is maintained. If the required queue is free and ready to be in use
again, the user unlocks it using the Unlock API. When we are talking
about concurrent updates, NCache’s locking feature is ready to serve and
provide data integrity and data consistency.

5

that also caches some reference data. They also have 2 other caches for
storing static data, i.e., “tasks”. The general cache and the static caches
both have a Backing Source (Read-Through) and Loader implemented.

SignalR Backplane

Queue Data Structure for Consistent Data

You can download a free 60
day fully working trial of
NCache from here:
www.alachisoft.com/ncache

About Alachisoft:
Alachisoft provides a popular
high performance in-memory
distributed cache called
NCache. NCache is an Open
Source middleware that runs in
production environment and
boosts performance and
scalability of .NET web apps,
SOA service apps, and general
high traffic server apps. NCache
has a 13 year proven track
record with hundreds of
customers all over the world
and specially in US, UK, and
Western Europe.

 Alachisoft
Corporate Headquarters

12005 Ford Road, Suite 520
Dallas, TX 75234

US: +1 (214) 764-6933
UK: +44 207 993-8327
Fax: +1 (925) 886 8361

Sales Email:

Technical Support:

sales@alachisoft.com

support@alachisoft.com

to it, let’s say for about 20 seconds using the Lock API so that data
integrity is maintained. If the required queue is free and ready to be in use
again, the user unlocks it using the Unlock API. When we are talking
about concurrent updates, NCache’s locking feature is ready to serve and
provide data integrity and data consistency.

6

Backing Source (Read-Through Caching)

NCache provides another powerful feature, the Cache Startup Loader,
that they have been using in their tracking application. The application
pre-populates the data in the cache on startup. This not only saves
network costs but also makes the data highly available. The Cache
Loader’s purpose is to avoid latency even on the initial request, but
since the Cache Loader runs on another service, it is technically asyn-
chronous. The tracking application always keeps the most frequently
used data in the cache on startup. This feature has helped improve the
application performance, along with handling the request throughput.

Cache Loader for Pre-Populating the
Cache

Moving Forward with NCache

The organization is benefitting from NCache in numerous areas as
explained above. As part of their future growth, they are planning to use
NCache’s Groups feature, along with its Event Notifications, and Pub/-
Sub messaging, as the Action Service has to poll every time to check for
updates. NCache is able to manage all this for them without lacking
performance.

Visit our website at
www.alachisoft.com

They used the Read-Through provider implemented in the application’s
general, as well as static caches store - to fetch the data from the data
source in case it is not present in the cache. This minimizes the addi-
tional network trips to the database. NCache offers a Read-Through
provider that enables the users to communicate with the data source. In
Read-Through Caching, in the event of a cache miss, NCache will
contact the provider to load data behind the get call.

