
© Copyright 2023 by Alachisoft. All rights reserved.

AppFabric

 vs.

NCache

Feature Level Comparison

AppFabric v1.1 vs. NCache 5.3 SP1

This document compares AppFabric v1.1 and NCache 5.3 SP1. Read this comparison to:

 Understand AppFabric and NCache major feature differences

 See how AppFabric and NCache compare on qualitative aspects such as performance, scalability, high
availability, data reliability, and administration.

© Copyright 2023 by Alachisoft. All rights reserved.

Disclaimer

The comparison provided in this document is to help you get a better understanding of AppFabric versus

NCache. The information about AppFabric comes from freely available downloads, product documents,

and forums.

We did not conduct any scientific benchmarks for the performance and scalability of AppFabric, so our

assessment of it may be different from yours. NCache benchmarks are already published on our website

(www.alachisoft.com) for you to see.

Additionally, we have made a conscious effort to be objective, honest, and accurate in our assessments
in this document. However, do keep in mind any information about AppFabric could be unintentionally
incorrect or missing, and we do not take any responsibility for it.

Instead, we strongly recommend that you compare AppFabric with NCache and arrive at your own

conclusions. We also encourage you to do performance benchmarks of both AppFabric and NCache in

your environment for the same purpose.

http://www.alachisoft.com/

© Copyright 2023 by Alachisoft. All rights reserved.

Table of Content

Disclaimer ... 2

1 Executive Summary .. 4

2 Qualitative Differences Explained ... 11

2.1 NCache Supported Clients ... 11

2.2 .NET Platform Support ... 11

2.3 Operating System Support .. 12

2.4 Containers & Docker Support ... 13

2.5 Cloud Support .. 14

2.6 Performance and Scalability ... 15

2.7 Cache Elasticity (High Availability) .. 18

2.8 Cache Topologies.. 20

2.9 WAN Replication .. 23

2.10 ASP.NET & ASP.NET Core Support ... 24

2.11 Object Caching Features ... 27

2.12 Managing Data Relationships in Cache .. 29

2.13 Cache Synchronization with Database ... 30

2.14 Event Driven Data Sharing... 33

2.15 SQL-Like Cache Search .. 35

2.16 Data Grouping .. 36

2.17 Read-through, Write-through, Cache Loader & Refresher .. 37

2.18 Big Data Processing .. 39

2.19 Third-Party Integrations & Extensions .. 40

2.20 Security & Encryption .. 42

2.21 Cache Size Management (Evictions Policies) ... 43

2.22 Distributed Data Structures .. 44

2.23 Cache Administration... 45

2.24 Java Support ... 47

3. Conclusion ... 49

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

1. Executive Summary

This document compares AppFabric v1.1 with NCache 5.3 SP1, and explains their significant
differences. This comparison focuses on all the major areas that a good distributed cache should
provide.

Feature AppFabric NCache

NCache Client Support

- .NET Supported Supported

- Java Not Supported Supported

- Scala Not Supported Supported

- Node.js Not Supported Supported

- Python Not Supported Supported

.NET Platform Support

- Cache Client (.NET 4.x) Supported Supported

- Cache Client (.NET 6) Not Supported Supported

- NuGet Packages (.NET 4.x) Supported Supported

- Cache Server (.NET 4.x) Supported Supported

- Cache Server (.NET 6) Not Supported Supported

- Server-Side Code (.NET 4.x) Supported Supported

- Server-Side Code (.NET 6) Not Supported Supported

Operating System Support

- Windows (Cache Server) Supported Supported

- Windows (Cache Client) Supported Supported

- Linux (Cache Server) Not Supported Supported

- Linux (Cache Client) Not Supported Supported

Containers & Docker Support

- Docker Image (Windows) Not Supported Supported

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

- Docker Image (Linux) Not Supported Supported

- Azure Service Fabric Not Supported Supported

- Azure Kubernetes Service (AKS) Not Supported Supported

- AWS Elastic Kubernetes Service (EKS) Not Supported Supported

- Red Hat OpenShift Kubernetes Not Supported Supported

Cloud Support

- Azure Virtual Machine Not Supported Supported

- Azure Managed Service Not Supported Supported

- AWS Virtual Machine Not Supported Supported

- AWS Managed Service Not Supported Supported

- Other Leading Clouds Not Supported Supported

Performance and Scalability

- Cache Performance
Please verify
yourself

Super-Fast

- Cache Scalability Please verify
yourself

Extremely Scalable

- Bulk Operations Partial Support Supported

- Async Operations Not Supported Supported

- Compression Partial Support Supported

- Fast Dynamic Compact Serialization Not Supported Supported

- Indexes Not Supported Supported

- Multiple NIC Binding Not Supported Supported

- Pipelining Not Supported Supported

Cache Elasticity (High Availability)

- Dynamic Cache Cluster Partial Support Supported

- Peer-to-Peer Architecture Not Supported Supported

- Connection Failover Partial Support Supported

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

- Dynamic Configuration Not Supported Supported

- Multiple Clusters Not Supported Supported

- Named Caches Supported Supported

- Cluster Specific Events Partial Support Supported

- Split Brain Detection & Auto-Recovery Not Supported Supported

Cache Topologies

- Local Cache Partial Support Supported

- Client Cache (Near Cache) Partial Support Supported

- Mirrored Cache Not Supported Supported

- Replicated Cache Not Supported Supported

- Partitioned Cache Supported Supported

- Partitioned-Replica Cache Supported Supported

- Partitioned Data Balancing Supported Supported

- Load Balancing Not Supported Supported

- Partitioned Data Affinity Not Supported Supported

- Persistence Not Supported Supported

WAN Replication (Multi-Datacenter)

- Active – Passive Not Supported Supported

- Active – Active (2 Datacenters) Not Supported Supported

- Active – Active (3+ Datacentres) Not Supported Supported

- Conflict Resolution Not Supported Supported

- De-duplication Not Supported Supported

- Data Security Not Supported Supported

ASP.NET & ASP.NET Core Support

- ASP.NET Core Sessions (basic) Not Supported Supported

- ASP.NET Core Sessions (advanced) Not Supported Supported

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

- ASP.NET Core Sessions (multi-datacentre) Not Supported Supported

- ASP.NET Core Response Cache Not Supported Supported

- ASP.NET Session State Caching (basic) Partial Support Supported

- ASP.NET Session State Caching (advanced) Not Supported Supported

- ASP.NET Sessions State (multi-datacentre) Not Supported Supported

- ASP.NET SignalR Backplane Not Supported Supported

- ASP.NET View State Cache Partial Support Supported

- ASP.NET Output Cache Supported Supported

Object Caching Features

- Get, Add, Insert, Remove, Exists, Clear Cache Supported Supported

- Expirations Partial Support Supported

- Lock & Unlock Supported Supported

- Streaming API Not Supported Supported

- Transactions Not Supported Partial Support

- Data Portability Not Supported Supported

- Item Versioning Supported Supported

- Multiple Object Versions Not Supported Supported

Managing Data Relationships in Cache

- Key Based Relationships Not Supported Supported

- Key Based Relationships Across Caches Not Supported Supported

Cache Synchronization with Database

- SQL Dependency (SQL Server) Not Supported Supported

- Oracle Dependency (Oracle) Not Supported Supported

- Db Dependency (Any DB) Not Supported Supported

- File Dependency Not Supported Supported

- Aggregate Dependency Not Supported Supported

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

- Custom Dependency (polling) Not Supported Supported

- Custom Dependency (events) Not Supported Supported

Event Driven Data Sharing

- Item Level Events (OnInsert/OnRemove) Supported Supported

- Cache Level Events (Add/Insert/Remove) Partial Support Supported

- Custom Events (Fired by Apps) Not Supported Supported

- Continuous Query Not Supported Supported

- Pub/Sub Messaging (Topic) Not Supported Supported

- Pub/Sub Messaging (Queue) Not Supported Not Supported

- Pub/Sub Messaging (Multiple or Wildcard
Subscriptions)

Not Supported Supported

- Pub/Sub Messaging (Durable Subscriptions) Not Supported Supported

- Pub/Sub Messaging (Non-Durable
Subscriptions)

Not Supported Supported

SQL-Like Cache Search

- SQL Search Not Supported Supported

- LINQ Queries Not Supported Supported

- SQL & LINQ on Tags, Named Tags & Groups Not Supported Supported

Data Grouping

- Groups Not Supported Supported

- Tags Supported Supported

- Named Tags Not Supported Supported

Read-through, Write-through, Cache Loader &
Refresher

- Read-through Supported Supported

- Write-through Not Supported Supported

- Write Behind Supported Supported

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

- Auto Reload at Expiration & Database Sync Not Supported Supported

- Cache Start-up Loader & Refresher Not Supported Supported

Big Data Processing

- MapReduce Query Not Supported Supported

- Aggregators Not Supported Supported

- Entry Processor Not Supported Supported

Third Party Integrations & Extensions

- Entity Framework Core Cache (Extension
Methods)

Not Supported Supported

- Entity Framework 6 Cache Not Supported Supported

- NHibernate 2nd Level Cache Not Supported Supported

- Server-side Extensible Modules Not Supported Supported

- Full Text Search Extensible Module Not Supported Supported

- IdentityServer4 Cache and Data Store Not Supported Supported

- Memcached Protocol Server Not Supported Supported

- Memcached Smart Wrapper Not Supported Supported

Security & Encryption

- Authentication Supported Supported

- Authorization Supported Supported

- Data Encryption Partial Support Supported

- Secure Communication Supported Supported

Cache Size Management (Evictions Policies)

- Max Cache Size (in MBs) Supported Supported

- LRU Evictions (Least Recently Used) Supported Supported

- LFU Evictions (Least Frequently Used) Not Supported Supported

- Priority Evictions Not Supported Supported

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

- Do Not Evict Option Not Supported Supported

Distributed Data Structures

- String Not Supported Supported

- List Not Supported Supported

- Sorted List Not Supported Not Supported

- Set Not Supported Supported

- Sorted Set Not Supported Not Supported

- Queue Not Supported Supported

- Dictionary Not Supported Supported

- Counter Not Supported Supported

- Hyper Log Not Supported Not Supported

- SQL Search on Data Structures Not Supported Supported

Cache Administration

- Admin Tool (Web based GUI) Partial Support Supported

- Monitoring Tool (Web based GUI) Not Supported Supported

- Monitoring Tool (Prometheus) Not Supported Supported

- Monitoring Tool (Grafana) Not Supported Supported

- SNMP Counters Not Supported Supported

- PerfMon Counters Supported Supported

- Admin Tools (PowerShell) Supported Supported

- Admin Tools (Command Line) Supported Supported

- Administration and Monitoring (API) Partial Support Supported

Java Support

- Java API Support Not Supported Supported

- JCache API Support Not Supported Supported

- Spring Caching Not Supported Supported

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

- Java Web Sessions Not Supported Supported

- Java Web Sessions (multi-datacentre) Not Supported Supported

2. Qualitative Differences Explained

2.1. NCache Supported Clients

To allow for user flexibility when employing NCache features, it supports a variety of client
applications along with the associated namespaces/packages/classes as demonstrated below.

Feature Area AppFabric NCache

.NET Supported Supported

NCache supports working with
.NET applications.

Java Not Supported Supported

NCache supports working with
Java applications.

Scala Not Supported Supported

NCache supports working with
Scala applications.

Python Not Supported Supported

NCache supports working with
Python applications.

Node.js Not Supported Supported

NCache supports working with
Node.js applications.

2.2. .NET Platform Support

For .NET applications, it is important that your distributed cache is also native to .NET, so your entire
application stack is .NET. Otherwise, it unnecessarily complicates things for your development,
testing, and deployment. This section describes how AppFabric and NCache support .NET platform.

Feature Area AppFabric NCache

Cache Client (.NET 4.x)
Supported Supported

Cache Client present as a NuGet

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

package and separate
installation.

Cache Client (.NET 6)

Not Supported Supported

.NET Core Client is officially
supported.

NuGet Packages (.NET 4.x)

Supported Supported

Full set of NuGet Packages
Provided.

Cache Server (.NET 4.x)

Supported Supported

NCache server is native .NET.

Cache Server (.NET 6)

Not Supported Supported

NCache server is native .NET
Core.

Server-Side Code (.NET 4.x)

Supported Supported

Develop all server-side code like
Read-through, Write-through,
Write-behind, Cache Loader &
Refresher, Custom Dependency,
and more in .NET.

Server-Side Code (.NET 6)

Not Supported Supported

NCache server supports .NET
Core based server-side code like
Read- through, Write-through,
Write- behind, Cache Loader &
Refresher, Custom Dependency,
and more.

2.3. Operating System Support

Most .NET applications run on Windows and now .NET Core applications can run on both Windows
and Linux. Therefore, it is important that your distributed cache also provides support for these
operating systems. This section describes how AppFabric and NCache support different OS.

Feature Area AppFabric NCache

Windows (Cache Server) Supported Supported

Windows officially supported

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

for Cache Server.

Windows (Cache Client) Supported Supported

Windows officially supported for
Cache Client.

Linux (Cache Server) Not Supported Supported

Linux officially supported for
Cache Server.

Linux (Cache Client) Not Supported Supported

Linux officially supported for
Cache Client using .Net Core
support.

2.4. Containers & Docker Support

Containers are becoming very popular for deploying applications in the cloud and elsewhere.

Feature Area AppFabric NCache

Docker Image (Windows) Not Supported Supported

Windows Docker Image officially
supported for Cache Server.

Docker Image (Linux) Not Supported Supported

Linux Docker Image officially
supported for Cache Server.

Azure Service Fabric Not Supported Supported

NCache can be deployed inside
Azure Service Fabric and
accessed. You can use the same
BYOL licenses within Azure
Service Fabric.

Azure Kubernetes Service
(AKS)

Not Supported Supported

NCache can be deployed inside
Azure Kubernetes Service (AKS)
and accessed. You can use the
same BYOL licenses within AKS.

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

AWS Elastic Kubernetes
Service (EKS)

Not Supported Supported

NCache can be deployed inside
AWS Elastic Kubernetes Service
(EKS) and accessed. You can use
the same BYOL licenses within
AKS that you used in Azure.

Red Hat OpenShift
Kubernetes

Not Supported Supported

NCache can be deployed inside
Red Hat OpenShift Kubernetes
and accessed. You can use the
same BYOL licenses within Red
Hat OpenShift that you used in
Azure.

2.5. Cloud Support

See how each product compares with each other when it comes to providing support for leading
cloud platforms.

 Feature Area AppFabric NCache

Azure Virtual Machine Not Supported Supported

Preconfigured NCache Server
VMs are available in Azure
Marketplace. You can take BYOL
licenses to another cloud.

Azure Managed Service Not Supported Supported

With NCache managed service,
you will get provisioned,
installed and licensed images on
Azure with billing configured
through Azure portal.

AWS Virtual Machine Not Supported Supported

Preconfigured NCache Server
VMs are available in AWS
Marketplace.

AWS Managed Service Not Supported Supported

With NCache managed service,
you will get provisioned,
installed and licensed images on

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

AWS with billing configured
through AWS.

Other Leading Clouds Not Supported Supported

You can install NCache in all
leading cloud platform VMs.
And, you can take BYOL licenses
from one cloud to another.

2.6. Performance and Scalability

Performance is defined as how fast cache operations are performed at a normal transaction load.
Scalability is defined as how fast the same cache operations are performed under higher and higher
transaction loads. NCache is extremely fast and scalable.

See NCache benchmarks at Performance and Scalability Benchmarks.

Feature Area AppFabric NCache

Cache Performance Please verify yourself

AppFabric uses WCF for
client/server and server/server
communication. WCF is quite
heavy because it is a general-
purpose communication
protocol. Please test the
benchmarks yourself and make
sure your seeing performance
based on a real-life usage.

Super-Fast

NCache is extremely fast. Please
see its performance benchmarks
showing 2 million ops/sec that
can scale further.

You can do benchmarking of
NCache in your own
environment by using stress-
testing tools provided with
NCache.

Cache Scalability Please verify yourself

In non-scientific testing, we’ve
seen AppFabric to not scale very
nicely and as you increase load,
the overall performance drops.

Extremely Scalable

NCache provides linear
scalability, means as you add
more nodes to the cluster your
performance increases in a
linear fashion. Please see its
performance benchmarks.

You can do benchmarking of
NCache in your own
environment by using stress-
testing tools provided with
NCache.

Bulk Operations Partial Support

Supported

https://www.alachisoft.com/ncache/ncache-performance-benchmarks.html
https://www.alachisoft.com/ncache/ncache-performance-benchmarks.html
https://www.alachisoft.com/ncache/ncache-performance-benchmarks.html

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

Only Bulk Get provided. No Bulk
Add, Update or Delete.

Bulk Get, Add, Insert, and
Remove. This covers most of the
major cache operations and
provides a great performance
boost.

Async Operations Not Supported Supported

Async add, insert, and remove
provided. Async operation
returns control to the
application and performs the
cache operation in the
background. Improves
application response time
greatly.

Compression Partial Support

You cannot specify a threshold
on object size. As a result, even
small cached items are
compressed which slows down
the cache.

Supported

Specify this along with item size
threshold and only items larger
than the threshold are
compressed. Rest are cached
uncompressed. This is provided
because compressing smaller
items often slows things down.
And, you can configure
“compression” at runtime
through “Hot Apply”.

Fast Dynamic Compact
Serialization

Not Supported Supported

NCache lets you register your
classes with the cache through a
Web Based GUI tool (NCache
Web Manager). Then, NCache
generates serialization code and
compiles it in-memory when
your application connects to the
cache. This code is then used to
serialize objects and it is almost
10 times faster than regular
.NET and Java serialization
(especially for larger objects).

Indexes Not Supported Supported

You can use NCache Manager
(GUI tool) to create indexes on
any attributes of .NET or Java
objects. NCache also creates

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

indexes automatically on Tags,
Named Tags, and Groups.
Expiration and eviction policies
also use indexes.

NCache generates data
extraction code at connection
time, compiles it in-memory,
and uses it for all data
extraction instead of .NET and
Java Reflection. This is much
faster.

NCache allows you to define
indexes on object attributes.

NCache then generates data
extraction code for these
indexes at connection time,
compiles it in- memory, and
uses it at client-side for all data
extraction. This is much faster
than using Reflection.

Multiple NIC Binding Not Supported Supported

You can assign two NICs to a
cache server. One can be used
to talk to the cache server and
second for multiple cache
servers in the cluster to talk to
each other.

This improves your bandwidth
scalability greatly.

You can also assign a specific
NIC for a cache client to use for
talking to the cache server.

Pipelining Not Supported Supported

NCache uses
System.IO.Pipelines for high
performance IO operations
between clients and servers.
With pipelining, you
dramatically increase scalability.
It is enabled by default but can
be disabled through config.

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

2.7 Cache Elasticity (High Availability)

Cache elasticity means how flexible is the cache at runtime. Are you able to perform the following
operations at runtime without stopping the cache or your application? It includes the following:

 Add or remove any cache servers at runtime without stopping the cache.

 Make cache config changes without stopping the cache.

 Add or remove web application servers without stopping the cache.

 Have failover support in case any server goes down (meaning are cache clients are able to
continue working seamlessly.

This is an area where AppFabric is relatively weak. In fact, it doesn’t provide support for some of
these things. But, NCache is known for its strength in this area. NCache provides a self-healing
dynamic cache clustering that makes NCache highly elastic.

Feature Area AppFabric NCache

Dynamic Cache Cluster Partial Support

Not fully dynamic.

Dependency on “lead hosts
majority rule” means cluster can
go down very easily if even one
lead host goes down.

Supported

NCache is highly dynamic and
simple to manage. A shard in
NCache is a partition. And, a
partition can also have a replica
but always on separate server.

And, similar to AppFabric, if a
cache server goes down, its
replica automatically takes over.

But, unlike AppFabric, NCache
replica automatically rebalances
and merges itself into other
partitions and all the partitions
ensure they have corresponding
replicas.

This way, NCache is not
vulnerable to data loss except
during the rebalancing (state
transfer) which is quite fast.

Peer-to Peer-Architecture Not Supported

Cache cluster contains regular
cache nodes and lead host
nodes resembling “master” and
“slave” architecture and is
therefore not fully peer-to-peer.

Supported

NCache cache cluster has a peer
to peer architecture. This means
there is no “master/slave” and
no “majority rule” in the cluster.

All nodes are equal. There is a
“coordinator” node that is the
senior most node. If it goes

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

down, next senior most node
takes over this role
automatically. This means if any
server goes down, the cluster
always remains functional and
correct (even if there is data loss
due to not having replicas).

Connection Failover Partial Support

Client to server failover
supported. However, server to
server connection failure not
fully supported due to lead host
majority rule.

Supported

NCache provides full connection
failover support between cache
clients and servers and also
within the cache cluster. In case
of cache server failure, NCache
clients continue working with
other servers in the cluster and
without any interruption. The
cluster auto-manages itself by
rebalancing its data and
recreating replicas where
needed.

Dynamic Configuration Not Supported

All configurations must be
defined before cache starts or
the cache is restarted for
changes to take effect.

Supported

NCache cluster configuration is
not hard coded and when you
add or drop servers at runtime,
all other servers in the cluster
are made aware of it.

NCache clients also learn about
all the servers and a variety of
other configuration at runtime
from the cache cluster.

Also, ‘Hot Apply’ feature allows
you to change a lot of the
configuration at runtime
without stopping anything.

Multiple Clusters Not Supported

Each cache server can
participate in only one cache
cluster.

Supported

NCache allows you to create
multiple cache clusters of either
the same or different topologies
on the same set of cache servers.

Named Caches Supported Supported

NCache allows you to create

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

multiple named caches on the
same set of servers.

Cluster Specific Events Partial Support

Polling is required by cache
clients to receive event
notifications.

Supported

NCache provides events about
changes in the cluster like:
MemberJoined, MemberLeft,
CacheStopped, etc. These
events can be delivered to both
.NET and Java applications
natively.

Split Brain Detection &
Auto-Recovery

Not Supported Supported

Split brain detection is provided
and you’re notified through
NCache events when that
happens and auto recovery is
provided.

2.8. Cache Topologies

Cache Topologies determine data storage, data replication, and client connection strategy. There are
different topologies for different type of use cases. So, it is best to have a cache that offers a rich
variety of cache topologies.

Read more details on NCache caching topologies at In-Memory Distributed Cache Topologies.

Feature Area AppFabric NCache

Local Cache Partial Support

AppFabric supports InProc Local
Caches but not OutProc Local
Caches.

Supported

Both InProc and OutProc.

InProc is much faster but your
memory consumption is higher
if you have multiple instances
on the same machine.

OutProc is slightly slower due to
IPC and serialization cost but
saves you memory consumption
because there is only one copy
per machine.

Client Cache (Near Cache) Partial Support

Only supports InProc client
cache. Additionally, it does not
support the data

Supported

Client Cache is a local cache on
the cache client machine but
one that is connected and

https://www.alachisoft.com/ncache/caching-topology.html

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

synchronization with cluster
cache (client cache polling
mechanism) available in
NCache.

synchronized with the cache
cluster.

Client Cache gives a local cache
performance (specially InProc)
but with the scalability of a
distributed cache.

NCache allows you to configure
Client Cache without any code
changes to the client
application.

Mirrored Cache Not Supported Supported

Mirrored Cache is a 2-node
Active- Passive cache. All clients
connect to the Active node and
data mirroring is done
asynchronously.

In case the Active node goes
down, Passive node
automatically becomes Active
and all clients connect to it
automatically.

Replicated Cache Not Supported Supported

In Replicated Cache, the entire
cache is replicated on all nodes
in the cluster.

You can have more than 2
nodes and all nodes are active
meaning clients connect to
them directly.

Updates are done synchronously
within the cluster and are
therefore slower than other
topologies. But, reads are super-
fast. Each client connects to only
one node. You can enable load-
balancing or specify an ordered
server list for the clients to use.

Partitioned Cache Supported

Does not allow changes to be
made on runtime.

Supported

Full failover support if any
server goes down (although

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

there is data loss).

The Partitioned Cache is a very
powerful topology. You can
partition without replication to
speed up the cache and also use
less memory because you can
always reload some data if lost
in the cache.

In Partitioned Cache, the entire
cache is partitioned and each
cache server gets one partition.
All partitions are created or
deleted and their buckets
reassigned automatically at
runtime when you add/remove
nodes.

Data re-balancing feature is
provided even if no partition is
added or removed but when
any partition gets overwhelmed
with too much data. Each client
is connected to all cache nodes.
This allows it to directly go
where the data is (single hop).

Partitioned-Replica Supported Supported

Similar to partitioned but
contains replicas in different
nodes as backups.

Partitioned Data Balancing Supported Supported

Data is automatically rebalanced
when you add/remove cache
servers from the cluster.

Data is also rebalanced
automatically when one cache
server has a lot more data than
other servers. You can configure
the threshold of difference. You
can turn off auto rebalancing
and manually do it if you wish.

Load Balancing Not Supported Supported

NCache supports a load

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

balancing option as well and
clients are balanced among
server nodes in case of
Replicated Cache topology.

Partitioned Data Affinity Not Supported Supported

NCache supports storing cache
items with identical keys at the
same node to save on matching
cost.

Persistence Not Supported Supported

NCache has the equivalent of
RDB persistence though
Dump/Reload tools that take a
snapshot of the cache and
persist them to a disk or reload
the cache from a previous
dump.

2.9. WAN Replication

WAN replication is an important feature for many customers whose applications are deployed in
multiple data centers either for disaster recovery purpose or for load balancing of regional traffic.
The idea behind WAN replication is that it must not slow down the cache in each geographical
location due to the high latency of WAN for propagating the data replication. NCache provides Bridge
Topology to handle all of this.

Feature Area AppFabric NCache

Active – Passive (2
datacenters)

Not Supported Supported

You can create a Bridge
between Active and Passive
sites. The Active site submits all
updates to the Bridge which
then replicates them to the
Passive site.

Active – Active (2
datacenters)

Not Supported Supported

You can create a Bridge
between two active sites. Both
submit updates to the Bridge
which handles conflicts on “last
update wins” rule or through
custom conflict resolution
handler provided by you. Then,

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

the Bridge ensures that both
sites have the same update.

Active – Active (3+
datacenters)

Not Supported Supported

You can create a Bridge
between three or more active
sites. All submit their updates to
the Bridge which handles
conflicts on “last update wins”
rule or through a custom
conflict resolution handler
provided by you. Then, the
Bridge ensures that all sites
have the same update.

Conflict Resolution Not Supported Supported

By default, “last update wins”
algorithm is used to resolve
conflicts. But, you can specify a
“custom conflict resolution
handler” that is called to resolve
conflict by comparing the
content of both objects and
deciding.

De-duplication Not Supported Supported

NCache Bridge optimizes
replication queue by de-
duplicating items. If the same
key is updated multiple times, it
only replicates the most recent
update.

Data Security Not Supported Supported

You can encrypt data with 3DES
and AES algorithms before
transportation. Otherwise, you
can use a VPN between data
centers for security.

2.10. ASP.NET & ASP.NET Core Support

Given ASP.NET Core applications can persist their Sessions in a distributed cache and ASP.NET
applications need three things from a good in-memory distributed cache; ASP.NET Session State
storage, ASP.NET View State caching, and ASP.NET Output Cache. ASP.NET, it is essential for a

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

complete distributed cache to provide these features. The Session State store must allow session
replication in order to ensure that no session is lost even if a cache server goes down. And, it must
be fast and scalable so it is a better option than InProc, State Server, and SQL Server options that
Microsoft provides out of the box. NCache has implemented a powerful ASP.NET Session State
provider. Read more about it at NCache Product Features.

ASP.NET View State caching allows you to cache heavy View State on the web server so it is not sent
as “hidden field” to the user browser for a round-trip. Instead, only a “key” is sent.
This makes the payload much lighter, speeds up ASP.NET response time, and also reduces bandwidth
pressure and cost for you. NCache provides a feature-rich View State cache. Read more about it at
NCache Product Features.

Additionally, since .NET 4.0, Microsoft has changed the ASP.NET Output Cache architecture and now
allows third-party in-memory distributed cache to be plug-in. ASP.NET Output Cache saves the
output of an ASP.NET page so the page doesn’t have to execute next time. And, you can either cache
the entire page or portions of the page. NCache has implemented a provider for ASP.NET Output
Cache.

Feature Area AppFabric NCache

ASP.NET Core
Sessions (basic)

Not Supported Supported

NCache has implemented an
ASP.NET Core Sessions Provider.

NCache provides intelligent
session replication and is much
faster than any database
storage for sessions.

ASP.NET Core
Sessions (advanced)

Not Supported Supported

NCache also provides flexible
session locking options to
handle robots flooding an
ASP.NET website.

You can also related sessions
with view state so when a
session expires, all the
corresponding view state is also
removed.

ASP.NET Core
Sessions
(multi-datacenter)

Not Supported Supported

NCache allows you to share
ASP.NET Core sessions across
multiple data centers.

This serves situations where you
don’t want to replicate all
sessions to each data center but

https://www.alachisoft.com/ncache/features.html
https://www.alachisoft.com/ncache/features.html

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

want the ability to overflow
traffic from one data center to
another without losing your
ASP.NET Core sessions.

The session moves from one
data center to the next as the
user moves.

ASP.Net Core Response
Cache

Not Supported Supported

NCache implementation of
IDistributedCache utilizes
Distributed Cache Tag Helper
that provides the ability to
dramatically improve the
performance of your ASP.NET
Core app by caching its
responses.

ASP.NET Session Caching
(basic)

Partial Support

ASP.NET Session replication is
not fast and scalable because of
WCF being the transport layer.

Supported

NCache has implemented an
ASP.NET Session State Provider
(SSP) for .NET 2.0+. You can use
it without any code changes.
Just change web.config.

NCache provides intelligent
session replication and is much
faster than any database
storage for sessions.

ASP.NET Session Caching
(advanced)

Not Supported Supported

NCache also provides flexible
session locking options to
handle robots flooding an
ASP.NET website. You can also
related sessions with view state
so when a session expires, all
the corresponding view state is
also removed.

ASP.NET Sessions (multi-
datacenter)

Not Supported Supported

NCache allows you to share
ASP.NET sessions across
multiple data centers. This
serves situations where you
don’t want to replicate all

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

sessions to each data center but
want the ability to overflow
traffic from one data center to
another without losing your
ASP.NET sessions. The session
moves from one data center to
the next as the user moves.

ASP.NET SignalR Backplane Not Supported Supported

NCache supports the SignalR
Backplane.

It allows users to develop real-
time ASP.NET web apps with
servers that broadcast updates
to all registered clients.

ASP.NET View State Cache Supported

AppFabric supports ASP.NET
View State Cache but does not
allow for any advanced
capabilities.

Supported (advanced).

Yes. NCache has an ASP.NET
View State caching module. Use
it without any code changes.
Just modify config file. Here are
some advanced features
supported by NCache:
Group-level policy
Associate pages to groups
Link View State to sessions
Max View State count per user,
etc.

ASP.NET Output Cache Supported Supported

NCache has an ASP.NET Output
Cache provider implemented. It
allows you to cache ASP.NET
page output in an in-memory
Cache and share it in a web
farm.

2.11. Object Caching Features

These are the most basic operations without which an in-memory distributed cache becomes
almost unusable. These by no means cover all the operations a good cache should have.

Feature Area AppFabric NCache

Get, Add, Insert, Remove,
Exists, Clear Cache

Supported Supported

NCache provides more

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

variations and more control to
the user.

Expirations Partial Support

Only absolute expiration
provided. No sliding expiration
is available.

Supported

Absolute expiration is good for
data that is coming from the
database and must be expired
after a known time because it
might become stale.

Sliding expiration means expire
after a period of inactivity and is
good for session and other
temporary data that must be
removed once it is no longer
needed.

Lock & Unlock Supported Supported

NCache provides both. Lock is
used to exclusively lock a
cached item so nobody else can
read or write it.

This item stays locked until
either the lock expires or it is
unlocked. NCache also provides
“GetAndLock()”, that locks the
item before fetching it, and
“InsertAndUnlock()” that
updates the item and then
unlocks it, all in one call.

Streaming API Not Supported Supported

For large objects, NCache allows
the cache clients to fetch them
in “GetChunk()” manner and
update them in
“AppendChunk()” manner. With
this, NCache clients can stream
in or out large objects from the
cache.

Transactions Not Supported Partial Support

- Explicit locking
- Implicit locking (item

versioning)
- Entry Processor (are

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

atomic)

Data Portability Not Supported Supported

.NET to Java and Java to .NET
object conversion supported
without going through
JSON/XML transformation.
Configurable using a user-
friendly GUI.

Item Versioning Supported Supported

This ensures that only one client
can update an item and all
future updates will fail unless
cache clients first fetch the
latest version and then update
it.

Multiple Object Versions Not Supported

You have to manage it yourself.

Supported

NCache allows two different
versions of the same class to be
stored in the cache by different
apps. Each app retrieves its own
version and the cache keeps a
superset.

2.12. Managing Data Relationships in Cache

Since most data being cached comes from relational databases, it has relationships among various
data items. So, a good cache should allow you to specify these relationships in the cache and then
keep the data integrity. It should allow you to handle one-to-one, one-to-many, and many-to-many
data relationships in the cache automatically without burdening your application with this task.

Feature Area AppFabric NCache

Key Based Relation Not Supported Supported

You can specify that cached
item A depends cached item B
which then depends on cached
item C.

Then, if C is ever updated or
removed, B is automatically
removed from the cache and
that triggers the removal of A
from the cache as well. And, all
of this is done automatically by

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

the cache.

With this feature, you can keep
track of one-to-one, one-to-
many, and many-to-many
relationships in the cache and
invalidate cached items if their
related items are updated or
removed.

Key Based Relationships
Across Caches

Not Supported Supported

This is an extension of Key Based
Cache Dependency except it
allows you to create this
dependency across multiple
caches.

2.13. Cache Synchronization with Database

Database synchronization is a very important feature for any good in-memory Distributed Cache.
Since most data being cached is coming from a relational database, there are always situations
where other applications or users might change the data and cause the cached data to become
stale.

To handle these situations, a good in-memory Distributed Cache should allow you to specify
dependencies between cached items and data in the database. Then, whenever that data in the
database changes, the cache becomes aware of it and either invalidates its data or reloads a new
copy.

Additionally, a good distributed cache should allow you to synchronize the cache with non-
relational data sources since real life is full of those situations as well.

NCache provides very powerful database synchronization features.

Feature Area AppFabric NCache

SQL Dependency
(Sync with SQL Server)
(Event based)

Not Supported Supported

NCache provides
SqlDependency support for SQL
Server. You can associate a
cached item with a SQL
statement-based dataset in SQL
Server database. Then
whenever that dataset changes
(addition, updates, or removal),
SQL Server sends a notification
to NCache and NCache
invalidates this cached item or

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

reloads it if you have enabled it
with ReadThrough.

This feature allows you to
synchronize the cache with SQL
Server database. If you have a
situation where some
applications or users are directly
updating data in the database,
you can enable this feature to
ensure that the cache stays
fresh.

Oracle Dependency
(Sync with Oracle)
(Event based)

Not Supported Supported

NCache provides
OracleDependency support for
Oracle. You can associate a
cached item with a SQL
statement-based dataset in
Oracle database.

Then whenever that dataset
changes (addition, updates, or
removal), Oracle sends a data
notification to NCache and
NCache invalidates this cached
item or reloads it if you have
enabled it with ReadThrough.

This feature allows you to
synchronize the cache with
Oracle database. If you have a
situation where some
applications or users are directly
updating data in the database,
you can enable this feature to
ensures cache freshness.

Db Dependency
(Sync with OLEDB)
(Polling based)

Not Supported Supported

NCache provides support for
you to synchronize the cache
with any OLEDB database. This
synchronization is based on
polling. And, although it is not as
real-time as a database
notification, it is more efficient.

It is more efficient because in
one poll, NCache can

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

synchronize thousands of
cached items instead of
receiving thousands of
individual database notifications
from Oracle in case of
OracleDependency.

File Dependency
(Sync with Non-Relational
Source)

Not Supported Supported

NCache allows you to specify a
dependency on an external file.
Then NCache monitors this file
for any updates and when that
happens, NCache invalidates the
corresponding cached item.

This allows you to keep the
cached item synchronized with
a non- relational data source.

Aggregate Dependency Not Supported Supported

NCache also supports using
different strategies on the same
cache data in the form of
Aggregate Cache Dependency.
For example, you can associate
key dependency and file
dependency with an item using
aggregate dependency and data
will be invalidated based on the
first dependency triggered.

Custom Dependency
(Sync with any DB)
(Polling based)

Not Supported Supported

NCache allows you to
implement a custom
dependency and register your
code with the cache cluster.
Then, NCache calls your code to
monitor some custom data
source for any changes.

When changes happen, you fire
a dependency update within
NCache which causes the
corresponding cached item to
be removed from the cache.

This feature is good when you
need to synchronize the cached

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

item with a non-relational data
source that cannot be captured
by a flat file. So, custom
dependency handles this case.

Custom Dependency
(Sync with Any DB)
(Event Based)

Not Supported Supported

NCache allows you to
implement an event based
custom dependency called
NotifyExtensibleDependency to
receive notifications from your
data source whenever data
changes so you can update the
cache.

With this, you can write custom
code to sync cache through
event notification against SQL
Server, Oracle, CosmosDB,
MongoDB, and others.

2.14. Event Driven Data Sharing

Event Driven Data Sharing has become an important use for in-memory distributed caches. More
and more applications today need to share data with other applications at runtime in an
asynchronously.

Previously, relational databases were used to share data among multiple applications but that
requires constant polling by the applications wanting to consume data. Then, message queues
became popular because of their asynchronous features and their persistence of events. And
although message queues are great, they lack performance and scalability requirements of today’s
applications.

NCache provides very powerful features to facilitate Event Driven Data Sharing. They are discussed
below and compared with AppFabric.

Feature Area AppFabric NCache

Item Level Events (onInsert
onRemove)

Supported Supported

NCache can fire events to its
clients whenever specific cached
items are updated or removed
based on client interest. You can
register Java and .NET callbacks
with NCache client and your
callbacks are called in these
cases.

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

NCache uses its own socket-
level protocol for this event
propagation so it is super-fast.

Cache Level Events
(Add/Insert/Remove)

Partial Support

Cache Region event
notifications. These events
require polling by the cache
clients which has a negative
performance impact.

Supported

If turned on, NCache sends
event notifications to all clients
whenever any item is added,
updated, or removed from the
cache.

You can register Java and .NET
callbacks with NCache client and
your callbacks are called in
these cases.

Custom Events (Fired by
Apps)

Not Supported Supported

NCache allows your applications
to fire custom events into the
cache cluster. And, other
applications can register to be
notified for these events.

This feature allows you to
coordinate a pub/sub scenario
with asynchronous event driven
coordination between various
clients.

Continuous Query Not Supported Supported

NCache provides a powerful
Continuous Query (CQ) feature.
CQ lets you specify a SQL query
against which NCache monitors
the cache for any additions,
updates, or deletes. And, your
application is notified.

Pub/Sub Messaging (Topic) Not Supported Supported

NCache allows your applications
to do Pub/Sub style messaging
through Topic.

Pub/Sub Messaging
(Multiple or Wildcard)

Not Supported Supported

You can specify the topic names
through a wildcard pattern. And,

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

it not only maps you to all the
existing topics that match this
pattern but also looks for any
new topics added at runtime
matching the same pattern and
automatically subscribes to
them.

Pattern can be identified
wildcards along with multiple
delivery options.

Pub/Sub Messaging
(Durable Subscription)

Not Supported Supported

Durable subscription allows
clients who disconnect with
NCache for any reason to not
lose their messages. When they
reconnect, they see all the
message sent while they were
disconnected.

Pub/Sub Messaging (Non-
Durable Subscription)

Not Supported Supported

This method allows subscribers
to register to only receive
messages intended for it for as
long as it stays connected.

2.15. SQL-Like Cache Search

In-memory distributed cache is frequently used to cache objects that contain data coming from a
relational database. This data may be individual objects or collections that are the result of some
database query.

Either way, applications often want to fetch a subset of this data and if they have the ability to search
the distributed cache with a SQL-like query language and specify object attributes as part of the
criteria, it makes the in-memory Distributed Cache much more useful for them.

NCache provides powerful SQL-like searching capability of the cache.

Feature Area AppFabric NCache

SQL Search Not Supported Supported

NCache provides a rich SQL
based searching capability. You
can search the cache based on
object attributes instead of just
keys.

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

You can also include Group,
Tags, and Named Tags in your
SQL query.

LINQ Queries Not Supported Supported

NCache allows you to search the
cache with LINQ queries from
.NET applications. LINQ is a
popular object querying
language in .NET and NCache
has implemented a LINQ
provider.

So, if you’re comfortable using
LINQ, you can search the cache
the same way you would with
NCache SQL.

SQL & LINQ Search on Tags,
Named Tags & Groups

Not Supported Supported

NCache allows you to include
Tags, Named Tags, and Group
names as part of you SQL search
criteria.

2.16. Data Grouping

An in-memory distributed cache should be much more than a Hash table with a (key, value) pair
interface. It needs to meet the needs of real-life applications that expect to fetch and update data in
groups and collections. In a relational database, SQL provides a very powerful way to do all of this.

We’ve already explained how to search an in-memory distributed cache through SQL and LINQ. Now
let’s discuss Groups, Tags, and Named Tags. These features allow you to keep track of collections of
data easily and even modify them.

Feature Area AppFabric NCache

Groups

Not Supported Supported

NCache provides the ability to
fetch or remove all items
belonging to a group. You can
also fetch just the keys and then
only fetch subset of them.

Tags Supported

Tags in AppFabric are specific to
regions and not at cache level.

Supported

NCache provides a concept
called Tags. A Tag is a string that
you can assign to one or more

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

cached items. And one cached
item can be assigned multiple
Tags.

And, later, you can fetch items
belonging to one or more Tags
in order to manipulate them.

You can also include Tags in SQL
or LINQ search as part of the
criteria.

Named Tags Not Supported Supported

NCache provides Named Tags
feature. Each Named Tag has a
“key” and a “tag value” portion.

So, you can search for items
based on tag key and tag value
and not just tag value. Named
Tag works the same as a regular
Tag.

2.17. Read-through, Write-through, Cache Loader & Refresher

Many people use the in-memory distributed cache as “cache on the side,” where they fetch data
directly from the database and put it in the cache. Another approach is “read through” where your
application just asks the cache for the data. And, if the data isn’t there, the in-memory distributed
cache gets it from your data source.

The same thing goes for write-through. Write-behind is nothing more than a write-through where
the cache is updated immediately, and the control returns to the client application. And, then the
database or data source is updated asynchronously, so the application doesn’t have to wait for it.
NCache provides powerful capabilities in this area.

Feature Area AppFabric NCache

Read-through Supported Supported

NCache allows you to
implement multiple read-
through handlers and register
with the cache as “named
providers”. Then, the client can
tell NCache to use a specific
read-through upon a “cache
miss”.

NCache also allows you to add

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

read-through handlers at
runtime without stopping the
cache.

Write-through Not Supported Supported

NCache allows you to
implement multiple write-
through handlers and register
with NCache as “named
providers”. Then, whenever
application updates a cached
item and tells NCache to also
call write-through, NCache
server calls your write-through
handler.

Write-behind Supported Supported

If you’ve enabled write-behind,
then NCache updates the cache
immediately and queues up the
database update and then a
background thread processes it
and call your write-through
handler.

Auto Reload at Expiration &
Database Sync

Not Supported Supported

If you’ve implemented a read-
through handler, NCache allows
you to use it to specify that
whenever a cached item
expires, instead of removing it
from the cache, NCache should
call your read-through handler
to read a new copy of that
object and update the cache
with it.

You can specify the same when
database synchronization is
enabled and a row in the
database is updated and a
corresponding cached item
would have been removed from
the cache but is now reloaded
with the help of your read-
through.

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

Cache Startup Loader &
Refresher

Not Supported Supported

NCache lets you implement a
Cache Loader and register it
with the cache cluster. NCache
then calls it to prepopulate the
cache upon startup. Cache
Loader is the code that reads
data from your data
source/database. However, this
approach is likely to result in
stale data. As the user loads the
relevant data at cache startup,
and any change occurring in the
data source outdates it. To
prevent this invalidation,
NCache provides another
feature called cache refresher.
Which synchronizes the cache
with the database based on a
specified refresh interval.

2.18. Big Data Processing

In-memory procedures are ideal when analyzing and processing significant data amounts. A
distributed cache is a scalable in-memory data store. And, if it can support the popular Map/Reduce
style processing, then you’re able to speed up your work greatly.

Feature Area AppFabric NCache

MapReduce Query Not Supported Supported

NCache provides a MapReduce
framework where your program
can run on cache servers for
parallel processing of Big Data.

Aggregators Not Supported Supported

NCache provides Aggregator
that works with MapReduce
framework and provides you
statistical data.

Entry Processor Not Supported Supported

NCache fully supports Entry
Processor execution on cache
nodes in parallel.

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

2.19. Third-Party Integrations & Extensions

Entity Framework from Microsoft is also a very popular object-relational mapping engine. And,
although Entity Framework doesn’t have a nice Second Level Cache provide architecture like
NHibernate, NCache has nonetheless implemented a Second Level Cache for Entity Framework.

NHibernate is a very powerful and popular object-relational mapping engine. And, fortunately, it also
has a Second Level Cache provider architecture that allows you to plug-in a third-party cache without
making any code changes to the NHibernate application. NCache has implemented this NHibernate
Second Level Cache provider. See NHibernate Second Level Cache for details.

Memcached is an open-source in-memory distributed caching solution which helps speed up web
applications by taking pressure off the database. Memcached is used by many of the internet’s
biggest websites and has been merged with other technologies. NCache implements Memcached
protocol to enable users with existing Memcached implementations to easily migrate to NCache.

Feature Area AppFabric NCache

Entity Framework Core
Cache

Not Supported Supported

NCache has implemented EF
Core Extension Methods for
caching to make it really simple
for EF applications to use
caching. It also gives full control
to the application about how to
cache data.

Entity Framework 6 Cache Not Supported Supported

NCache has implemented a
behind- the-scene second level
cache for Entity Framework. You
can plug-in NCache to your EF
application, run it in analysis
mode, and quickly see all the
queries being used by it. Then,
you can decide which queries
should be cached and which
ones skipped.

NHibernate 2nd Level Cache No Official Support

This feature is not officially
supported. Only open source
projects support them.

Supported

NCache provides a NHibernate
L2 Cache provider that you can
plug-in through web.config or
app.config changes.

NCache has also implemented
database synchronization
feature in this so you can specify
which classes should be

http://www.alachisoft.com/ncache/nhibernate-second-level-cache.html

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

synchronized with the database.
NCache lets you specify
SqlDependency or
DbDependency for this.

Server-side Extensible
Modules

Not Supported Supported

NCache allows you to
dynamically register server-side
modules that can use NCache’s
distributed architecture.

Lucene.NET support is one such
module.

Full Text Search Extensible
Module

Not Supported Supported

NCache provides Full Text
Search through the industry
standard Lucene.

IdentityServer4 Cache and
Data Store

Not Supported Supported

NCache supports the
IdentityServer4 authentication
server to provide a collective
way to authenticate requests to
all of your applications, whether
they are web based, native,
mobile based or API endpoints.

Memcached Protocol
Server

Not Supported Supported

NCache has implemented
Memcached protocol fully. This
means you can plug-in NCache
as an in-memory distributed
cache as a replacement of
Memcached.

Two ways are offered to use
Memcached applications with
NCache.

Memcached Pug-In: All the
popular Opensource .NET
Memcached client libraries have
been implemented for NCache.

Memcached Gateway: Using
this you can store your

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

application data from any
application that use the
Memcached.

Memcached Smart
Wrapper

Not Supported Supported

NCache has implemented the
popular .NET and Java
Memcached client libraries
which in-turn calls NCache. This
allows you to plug-in
Memcached client library to
your application without any
code change or recompilation.

This wrapper does not require
you to go through a Memcached
Protocol Server which is an
extra hop.

2.20. Security & Encryption

Many applications deal with sensitive data or are mission-critical and cannot allow the cache to be
open to everybody. Therefore, a good in-memory distributed cache provides restricted access based
on authentication and authorization to classify people in different groups of users. And, it should also
allow data to be encrypted inside the client application process before it travels to the distributed
cache.

Feature Area AppFabric NCache

Authentication Supported

Through Windows Identity
Foundation.

Supported

You can authenticate users
against Active Directory or
LDAP.

Authorization Supported

AppFabric allows authorization
through 3 users groups;
"administrators", "Observers",
and "Users".

Supported

You can authorize users to be
either “users” or “admins”.
Users can only access the cache
for read- write operations while
“admins” can administer the
cache.

Data Encryption Partial Support

AppFabric only provides
encryption for transporting data
between the client cache and
cache cluster. No encryption is

Supported

You can enable encryption and
NCache automatically encrypts
all items one client-side before
sending them to the cache.

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

available for items stored in the
cache.

And, this data is kept encrypted
while in the cache. And
decryption also happens
automatically and transparently
inside the client process.

Currently, 3DES and AES128 /
AES196 / AES256 encryptions
are provided and more are
being added.

Secure Communication Supported Supported

NCache provides SSL support for
client/server communication.

Additionally, strong encryptions
are provided by NCache so you
can encrypt data over an
unsecured connection.

2.21. Cache Size Management (Evictions Policies)

An in-memory distributed cache always has less storage space than a relational database. So, by
design, an in-memory distributed cache is supposed to cache a subset of the data which is really the
“moving window” of a data set that the applications are currently interested in.

This means that an in-memory distributed cache should allow you to specify how much memory it
should consume and once it reaches that size, the cache should evict some of the cached items.

However, please keep in mind that if you’re caching something that does not exist in the database
(e.g. ASP.NET Sessions) then you need to do proper capacity planning to ensure that these cached
items (sessions in this case) are never evicted from the cache. Instead, they should be “expired” at
appropriate time based on their usage.

 Feature Area AppFabric NCache

Max Cache Size (in MBs) Supported Supported

NCache supports setting limits
on cache sizes.

LRU Evictions (Least
Recently Used)

Supported Supported

NCache supports least recently
used eviction.

LFU Evictions (Least
Frequently Used)

Not Supported Supported

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

NCache supports least
frequently used eviction policy
using which you will be able to
keep that data in cache for
longer which is being used more
frequently.

Priority Evictions Not Supported Supported

This eviction policy lets the
cache evict lesser important
data first.

Do Not Evict Option Not Supported Supported

NCache lets you specify “do not
evict” option for the entire
cache. Then, nothing is evicted
even when cache is full. Instead,
the client applications receive
an error stating that the cache is
full when they try to add data to
the cache.

2.22. Distributed Data Structures

NCache provides an extensive set of distributed data structures with .NET interfaces.

Feature Area AppFabric NCache

String Not Supported Supported

NCache provides string data
structures.

List Not Supported Supported

NCache provides support for
distributed list.

Sorted List Not Supported Not Supported

Set Not Supported

Supported

NCache provides the .NET
HashSet class implementation in
a distributed manner.

Sorted Set Not Supported Not Supported

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

Queue Not Supported Supported

NCache provides a Distributed
Queue.

Dictionary Not Supported Supported

NCache provides an IDictionary
implementation but in a
distributed manner.

Counter Not Supported Supported

Bitmap Not Supported Not Supported

Hyper Log Not Supported Not Supported

SQL Search on Data
Structure

Not Supported Supported

NCache allows you to use
SQL/LINQ to search items inside
collection type of data
structures like List, Queue,
Dictionary, and Set.

2.23. Cache Administration

Cache administration is a very important aspect of any distributed cache and support the following:

1. GUI based and command line tools for cache administration including cache creation and
editing/updates.

2. GUI based tools to monitor cache activities at runtime.
3. Cache statistics based on PerfMon (since for Windows PerfMon is the standard) NCache

provides powerful support in all these areas.

Feature Area AppFabric NCache

Admin Tool Not Supported Supported

NCache Web Manager is a
powerful GUI tool for NCache. It
gives you an explorer-style view
and lets you quickly administer
the cache cluster from a single
place. This includes cache
creation/editing and many other
functions.

Monitoring Tool (Web-
Based GUI)

Partial Support

Supported

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

AppFabric provides a very basic
monitoring through Azure
Portal.

NCache Web Monitor provides
rich set of performance
counters and other stats.

NCache Web Monitor is a
powerful GUI tool that lets you
monitor NCache cluster wide
activity from a single location. It
also lets you monitor all of
NCache clients from a single
location with a lot of details.
And, you can incorporate non-
NCache PerfMon counters in it
for comparison with NCache
stats. This real-time comparison
is often very important.

Monitoring Tool
(Prometheus)

Not Supported Supported

NCache allows you to monitor
Distributed Caches, Distributed
Cache with Persistence, the
Pub/Sub Message Store,
Distributed Lucene, Clients and
Bridges through the extensive
counters published by NCache
on a single platform.

Monitoring Tool (Grafana) Not Supported Supported

NCache provides a Grafana
Application Plugin that uses
Prometheus as a data source to
display cluster metrics.

SNMP Counters Not Supported Supported

NCache supports Simple
Network Management Protocol
counters to see how the
network devices of the
associated cache are
communicating and sharing
information with one another.

PerfMon Counters Supported

AppFabric provides a range of
PerfMon counters for
monitoring and troubleshooting
the cache.

Supported

NCache provides a rich set of
PerfMon counters that can be
seen from NCache Web
Manager, NCache Web Monitor,

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

or any third-party tool that
supports PerfMon monitoring.

Admin Tools (PowerShell) Supported

PowerShell Cmdlets provided.
You have to use PowerShell
Console or write scripts to use
these Cmdlets.

Supported

NCache provides a rich set of
PowerShell admin tools. You can
create a cache, add remote
clients to it, add server nodes to
it, start/stop the cache, and
much more.

Use these tools from your
PowerShell scripts and automate
various cache admin operations.

Admin Tools (Command
Line)

Supported Supported

NCache provides a rich set of
command line tools. You can
create a cache, add remote
clients to it, add server nodes to
it, start/stop the cache, and
much more.

Use these tools from your
scripts and automate various
cache admin operations.

Admin & Monitoring (API) Supported

REST API.

No .NET or Java events provided
for cluster changes at runtime.

Supported

NCache provides Java and .NET
API to manage and monitor the
caches & client. Using this API,
you can stop/start the cache,
receive connected client
statistics or the health of the
cluster.

2.24. Java Support

NCache provides strong support in all of these areas. See how AppFabric compares with NCache.

Feature Area AppFabric NCache

Java Client Not Supported Supported

NCache provides a Java Client
with full support.

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

JCache API Not Supported Supported

NCache provides JCache API as
its primary API for Java
applications and only provides
extended JCache API for
features that NCache provides
but that are not supported by
JCache.

As a result, you can plug-in
NCache to any JCache
application without any code
changes.

Spring Caching Not Supported Supported

NCache fully supports
integration with Spring
Framework version 3.1 and
further.

Java Web Sessions Not Supported Supported

NCache has implemented a JSP
Servlet Session Provider (Java
Servlet 2.3+). You can use it
without any code changes. Just
change web.xml. NCache
provides intelligent session
replication and is much faster
than any database session
storage.

Java Web Sessions (Multi-
site)

Not Supported Supported

NCache allows you to share Java
Web sessions across multiple
data centers.

This serves situations where you
don’t want to replicate all
sessions to each data center but
want the ability to overflow
traffic from one datacenter to
another without losing your
Java Web sessions. The session
moves from one data center to
the next as the user moves.

© Copyright 2023 by Alachisoft. All rights reserved
reseredreserved.

3. Conclusion

As you can see, we have outlined all of NCache features and all the corresponding AppFabric features
or a lack thereof in a very detailed manner. We hope this document helps you get a better
understanding of AppFabric versus NCache.

Please note that the true cost of ownership for a distributed cache is not just the price of it. It is the
cost to your business. The most important thing for many customers is that they cannot afford
unscheduled downtime (especially during peak hours). And, this is where an elastic cache like NCache
truly shines. Additionally, all those caching features that NCache provides are intended to give you
total control over the cache and allow you to cache all types of data and not just simple data. Please
read more about NCache and also feel free to download a fully working 60-day trial of NCache from:

NCache Details Download NCache

https://www.alachisoft.com/ncache/
https://www.alachisoft.com/download-ncache.html

	Disclaimer
	1. Executive Summary
	2. Qualitative Differences Explained
	2.1. NCache Supported Clients
	To allow for user flexibility when employing NCache features, it supports a variety of client applications along with the associated namespaces/packages/classes as demonstrated below.
	2.2. .NET Platform Support
	2.3. Operating System Support
	2.4. Containers & Docker Support
	2.5. Cloud Support
	2.6. Performance and Scalability
	2.7 Cache Elasticity (High Availability)
	2.8. Cache Topologies
	2.9. WAN Replication
	2.10. ASP.NET & ASP.NET Core Support
	2.11. Object Caching Features
	2.12. Managing Data Relationships in Cache
	2.13. Cache Synchronization with Database
	2.14. Event Driven Data Sharing
	2.15. SQL-Like Cache Search
	2.16. Data Grouping
	2.17. Read-through, Write-through, Cache Loader & Refresher
	2.18. Big Data Processing
	2.19. Third-Party Integrations & Extensions
	2.20. Security & Encryption
	2.21. Cache Size Management (Evictions Policies)
	2.22. Distributed Data Structures
	2.23. Cache Administration
	2.24. Java Support

	3. Conclusion

