
Case Study

We focused on
NCache because
we like the way it

improves application
performance and how it
meets all our caching
needs.”

�

Team Lead
Systems Architect

1

Top 5 Auto Maker

NCache allows this automaker to
maintain high-availablity and accelerate

response time of their Automobile Financial
Services Application.

2

Introduction

Country or Region:
Germany

Company Profile:

Industry:
Automobile Finance

One of the top five premium
manufacturers of automobiles was
established in Germany.

They have been manufacturing
their automobiles for a long time
and have successfully delivered
around millions of automobiles by
the end of 2018, including
motorcycles and cars.

Team Lead
Systems Architect

Automobile Finance industry is one of the largest industries in the world.
With a massive customer base, they have their network spread all over
the world. One of the top five auto makers, with hundreds of dealers all
across USA and tens of thousands of customers, needs high availability
and scalability within their automobile finance applications for their
everyday use. As a leading auto maker, their main goal is to provide a
value service for their dealers and the end customers by providing a fast
and reliable data access mechanism.

Their application is divided up into two parts. First is an interactive initia-
tion system for customer facing self-service portal and second is a dealer
facing portal for their financial service management. Financial services
include loan management, payment plans, installment plans and contract
management. The multiple systems handled by their application are:

Initiation System: this serves the purpose of talking to the
dealer & signing loan agreement for the purchase of an automobile.

Contract Management System: an account management system
that goes through the life span of the automobile.

Customer Self-Service: a self-service portal for the customer
which provides basic information about pricing and purchase details.

A diverse system with a large number of end users and multiple function-
alities demand a high-speed data delivery along with consistency on their
public facing site.

Challenges

With high transactional applications, the main challenge is to maintain
fast speed and high availability of data. The application heavily relies on
the backend relational database and it becomes a performance and
scalability bottleneck under high transactional load. With hundreds of

thousands of end-users, there is a high request load causing slow perfor-
mances. Additionally, the end-users are located in different time zones.
The load shifts over regions thus causing increased transactional loads on
the database. It results in a negative impact on the user and an associ-
ated business cost.

Other than that, with large data objects the data transmission over the
network becomes very slow. The network trips are very costly for large
data objects and it affects the overall performance of the application.

Static data can be kept in-memory to avoid the database trips every time
a request is made. This reduces the network trips as they are expensive
in nature. However, the in-memory data needs to be synchronized with
the database as there are two separate copies of the data and they can
fall out of sync. Thus, data synchronization is another challenge their
application is facing.

“We focused on NCache because we like the
way it improves application performance
and how it meets all our caching needs.”

•

•

•

3

Alachisoft Product:
NCache

Customer Needs Met:

• High Availability

• Consistency

• Stability

• Reliability

NCache is the Solid Fix!

NCache provides them with a flexible and scalable solution for their
multi-tiered application along with its advanced features. Caching the
frequently used data in memory using NCache not only speeds up the
application response time but also saves the database trips every time a
request is made. They are experiencing a faster data access and stability
on their application with NCache as their caching tier. NCache provides
them with the ease of adding more servers in the caching tier to increase
the application’s request handling threshold. It helps with the accommo-
dation of increasing request load on the application.

There is no downtime and no user data loss with NCache always ON
application setup for their mission critical system. This way, unplanned
outages or planned maintenance do not affect the application perfor-
mance.

Architectural Overview

The application architecture comprises of the following components:

Customer Self-Service Application (ASP.NET)
It is a customer facing portal designed in ASP.NET. It is used by the
customers.

Dealer Facing Loan & Contract Management App (ASP.NET)
It is for the dealers and also designed in ASP.NET.

With high transactional applications, the main challenge is to maintain
fast speed and high availability of data. The application heavily relies on
the backend relational database and it becomes a performance and
scalability bottleneck under high transactional load. With hundreds of

thousands of end-users, there is a high request load causing slow perfor-
mances. Additionally, the end-users are located in different time zones.
The load shifts over regions thus causing increased transactional loads on
the database. It results in a negative impact on the user and an associ-
ated business cost.

Other than that, with large data objects the data transmission over the
network becomes very slow. The network trips are very costly for large
data objects and it affects the overall performance of the application.

Static data can be kept in-memory to avoid the database trips every time
a request is made. This reduces the network trips as they are expensive
in nature. However, the in-memory data needs to be synchronized with
the database as there are two separate copies of the data and they can
fall out of sync. Thus, data synchronization is another challenge their
application is facing.

•

•

Middleware Services (.NET Web Services)
This layer comprises of a number of services that are used for the
data accessing. The applications on the front-end talk to the
middleware for services. This layer handles all the caching for the
application.

For a closer look on the application, their web application includes a
public facing web portal which is used by the customers and dealers in
regards to the financial services for the automobiles. The self-service
customer portal retains the information about the loans, payment plans,
pricing etc. The dealers all across the country use the dealer facing portal
which retains information about user’s credit history, installment plans
and contract management.

The middleware service tier has a number of WCF SOAP services respon-
sible for accessing the data from the backend database. It comprises of
12-17 servers and this is where NCache is used. The front-end web
application communicates with the middleware for requests such as user
records, pricing details and loan management etc.

Caching tier is a dedicated tier of 4 cache servers that physically resides
very close to the web servers so that they are on the same network. This
reduces the network latency and improves the request response time.

Figure 1 - Distributed cache reducing network latency and increasing response time

...

Load Balancer

SQL Server

Linear Scalability

Web Browsers

NCache Dynamic Cluster

... ...
ASP.NET Web Applications Web Services (WCF SOAP)

4

•

High Performance and Scalability

NCache is extremely fast and scalable with a distributed caching solution.
The data residing in NCache saves the application from making costly
trips to the database. They make complex pricing calculation on their
pricing object and then cache this data in NCache. This has helped them
improve application performance and also simplified the architecture
where they don’t have to perform these complex pricing calculations
again if data is already in NCache. If the data is not available in the
cache, then this pricing data is fetched from the database and is cached
for future usage.

This has improved end user experience and has a positive business
impact.

Client Cache for InProc Speed

The customer portal displays information about the prices of the cars and
the details such as manufacturing details and model etc. The catalogue
displays the pictures of the vehicles along with vehicle details. This data
is mostly static and some of it is large in size as well which makes it
expensive to fetch from database for individual requests. So, caching the
static data for usage enhances the user experience as the response time
is better along with the application performance.

NCache provides a specialized feature called Client Cache that is ideal for
caching static data. Client Cache allows them to keep data locally on the
application servers (closer to the application) and helps them save
expensive network trips in addition to expensive database trips that
NCache was already saving for them. Client Cache is also synchronized
with their remote clustered cache that ensures data consistency while
improving application performance.

Client cache also resolves the performance issues associated with large
data objects. Client Cache originally resides these large objects locally on

One of the main information they are caching is their complex pricing
information that contains a set of parameters such as year of manufac-
ture, model, regions etc.

They are using SQL Server as their relational database at the backend.
The following diagram depicts the application architecture visually.
They have around 400-500 dealers located all over USA. Their network
load thus shifts with respect to the active users. They further explained
that their applications is very high transactional with 2-3 million transac-
tions per second.

the same client machine hence, saving the back and forth network trips.
The application experiences a lot faster data retrieval with NCache client
cache.

In addition to Client cache, it is also recommended that they turn on
compression to reduce the size of the object to further tune the perfor-
mance.

5

https://bit.ly/37t5Ul4

Client Cache for InProc Speed

The customer portal displays information about the prices of the cars and
the details such as manufacturing details and model etc. The catalogue
displays the pictures of the vehicles along with vehicle details. This data
is mostly static and some of it is large in size as well which makes it
expensive to fetch from database for individual requests. So, caching the
static data for usage enhances the user experience as the response time
is better along with the application performance.

NCache provides a specialized feature called Client Cache that is ideal for
caching static data. Client Cache allows them to keep data locally on the
application servers (closer to the application) and helps them save
expensive network trips in addition to expensive database trips that
NCache was already saving for them. Client Cache is also synchronized
with their remote clustered cache that ensures data consistency while
improving application performance.

Client cache also resolves the performance issues associated with large
data objects. Client Cache originally resides these large objects locally on

Cache Loader for Pre-Loading the Cache

With caching, the application first checks for the data in the cache for
example, in order to view the price details the cache is checked first for
pre-calculated pricing data. If the cache fails to provide with the required
data, the data is looked for in the database. It is then saved in the cache
for future usage. It improves the application performance but it costs a
database trip for every data item that is not cached.

This problem is handled using the Cache Startup Loader. It pre-loads
most of the data in the cache on startup as most of their data is static. It
makes the data highly available and saves the network cost. In the above
example, for pricing details which require fast data loading, the cache will
always retain the data. It is of great help for further improving the appli-
cation performance and handling the request throughput.

https://bit.ly/2pKvAsC

Synchronizing Cache with SQL Server

NCache retains the data from the database and keeps it for usage. It
improves the throughput and performance of the application. However,
for two separate copies of data, synchronization is a major necessity. If
the data in the database is updated, the cache data becomes stale and
the application keeps using the stale data. In order to keep the cache
and database synchronized, NCache provides with a feature of database
synchronization which keeps the data in the both the data sources con-
sistent. For any change in the database, the data in cache automatically
gets removed and fetches the latest copy of data, the next time it is
asked for. This way, the application will always perform operations on the
updated data set.

Moving Forward with NCache

The automobile finance company is benefitting from NCache in a lot of
areas as discussed above and moving further, they are looking forward to
use Microservices architecture with NCache. They have decided to
enhance NCache usage further for their mission critical Microservices
applications for a higher uptime across all user regions. “I am really
hoping that we can move something fairly easy next and we start taking

the same client machine hence, saving the back and forth network trips.
The application experiences a lot faster data retrieval with NCache client
cache.

In addition to Client cache, it is also recommended that they turn on
compression to reduce the size of the object to further tune the perfor-
mance.

advantage of some advanced features of NCache”, said one of the archi-
tects of the team.

They are planning to use .NET Core with Kubernetes for this application
which NCache fully supports. They have also shown their interest in
event driven Pub/Sub messaging feature of NCache to provide communi-
cation between their microservices. NCache is able to manage all of this
for them (.NET Core, Containerization, Event Driven Pub/Sub Messaging)
while managing super-fast performance and extreme scalability.

6

Moving Forward with NCache

The automobile finance company is benefitting from NCache in a lot of
areas as discussed above and moving further, they are looking forward to
use Microservices architecture with NCache. They have decided to
enhance NCache usage further for their mission critical Microservices
applications for a higher uptime across all user regions. “I am really
hoping that we can move something fairly easy next and we start taking

Visit our website at
www.alachisoft.com

You can download a free 60
days fully working trial of
NCache from here:
www.alachisoft.com/ncache

About Alachisoft:
Alachisoft provides a popular
high performance in-memory
distributed cache called
NCache. NCache is an Open
Source middleware that runs in
production environment and
boosts performance and
scalability of .NET web apps,
SOA service apps, and general
high traffic server apps. NCache
has a 13 year proven track
record with hundreds of
customers all over the world and
specially in US, UK, and
Western Europe.

 Alachisoft
Corporate Headquarters

12005 Ford Road, Suite 520
Dallas, TX 75234

US: +1 (214) 764-6933
UK: +44 207 993-8327
Fax: +1 (925) 886 8361

Sales Email:

Technical Support:

sales@alachisoft.com

support@alachisoft.com

advantage of some advanced features of NCache”, said one of the archi-
tects of the team.

They are planning to use .NET Core with Kubernetes for this application
which NCache fully supports. They have also shown their interest in
event driven Pub/Sub messaging feature of NCache to provide communi-
cation between their microservices. NCache is able to manage all of this
for them (.NET Core, Containerization, Event Driven Pub/Sub Messaging)
while managing super-fast performance and extreme scalability.

7

