
	 December 2008	 HEALTH MANAGEMENT TECHNOLOGY	 www.healthmgttech.com14

 Postscript

 DUMMY

 MECHANICAL

 Sign-Off

 PRINT PROOF

 NEW PDF

 REVISED PDF

HMT
PG.14

 CIRCLE/RS#

 LIT#

 SHOWLINE

 I/O CHECK

 PROD MGR

Nelson Publishing

2500 Tamiami Tr N

Nokomis, FL 34275

1-800-226-6113

Hospital Information Systems

Maintaining
HIS Performance
Distributed caching provides scalability that can relieve
overloaded server farms and re-invigorate listless systems.

B y I q b a l K h a n

s Web and service-oriented architecture tech-
nologies become more popular, hospitals are
adopting them rapidly for automating their
operations and allowing their administrative

staffs, doctors and patients to directly access the hospital
information system (HIS). While this has introduced a lot
of efficiencies in hospital operations, it has also introduced
new headaches for hospital IT management due to an
increased load on the HIS.

An HIS consists of an integrated set of Web applications
automating hospital operations. This includes applications
managing administrative, financial, clinical, radiology and
lab operations. There are usually thousands of different
people using this system at any given time. However, de-
spite a large number of users, everybody expects the system
to perform well even during peak usage hours.

Hospitals try to address scalability by creating Web
farms consisting of multiple Web servers tied together
through a load balancer to distribute user load. Yet, as the
number of users and transactions grows, various data access
bottlenecks usually occur thus considerably reducing the
performance of those operations.

Typical solutions for resolving this challenge, such as add-
ing more servers, fall short and don’t provide the required
scalability for sustaining HIS at their normal performance
during peak usage. Scalability simply means keeping the
same system performance even during peak usage times.

Mission Critical
A hospital must always be operational; therefore, most

applications in an HIS are considered mission critical.
However, applications with a large number of simultaneous
users are more prone to downtime or scalability issues. One
such application is a clinical information system (CIS) that

A deals with electronic medical records. A CIS concentrates
on patient-related and clinical-state-related data and is used
by hospital staff, patients and even outside partners. This
can easily account for thousands if not tens of thousands
of people.

Due to its large number of users, a CIS is the most likely
candidate for having scalability issues. It can be regarded
as a mission critical application because doctors, nurses,
patients, business offices and medical records personnel
constantly rely on it. Therefore, it must provide 100 per-
cent uptime and with no noticeable drop in performance.
When a patient management system slows down due to
scalability problems, a domino effect within hospital opera-
tions adversely affects business costs.

As thousands of users log in and access the same infor-
mation performance lags, resulting in sluggish response
times for end users. A typical user expecting a two to five
second response time experiences 30- to 60-second re-
sponse times instead, and as the load on the system grows
one or more of the Web farm servers may crash.

A Web server can crash if its CPU or network card is
constantly using nearly 100 percent of its capacity, or if the
CIS application constantly requires more memory than
the server has available. All of these conditions can occur
if the load on a server goes above a certain threshold and
remains there.

Even more serious is the fact that though there may
be many Web servers in a Web farm, there is usually only
one database server. Although a Web farm can grow, a
database server cannot scale in the same fashion. The typi-
cal response to this issue is to beef up the database server
hardware; however, this only helps scalability slightly and
very quickly the bottlenecks re-surface and become a
serious problem.

	 December 2008	 HEALTH MANAGEMENT TECHNOLOGY	 www.healthmgttech.com16

 Postscript

 DUMMY

 MECHANICAL

 Sign-Off

 PRINT PROOF

 NEW PDF

 REVISED PDF

HMT
PG.16

 CIRCLE/RS#

 LIT#

 SHOWLINE

 I/O CHECK

 PROD MGR

Nelson Publishing

2500 Tamiami Tr N

Nokomis, FL 34275

1-800-226-6113

Hospital Information Systems

Stumbling Blocks
The fundamental problem of data access bottlenecks has

to do with the architecture of ASP.NET and Java Web ap-
plications. Increased user requests can be handled by adding
more servers to the Web farm, to provide more processing
power and more memory. However, data storage and data
access always become performance bottleneck in any ap-
plication; therefore, this bottleneck must be eliminated in
order to increase CIS application scalability.

CIS applications use two types of data: general purpose/
user specific application data that is stored in the data-
base; and temporary user session data that is kept in the

ASP.NET session state and used across multiple Web
requests. It is important to note, that an application data
storage problem cannot be fixed without an application
developer’s involvement because fixing the application’s
internal logic is required. Fixing a user session data bottle-
neck, however, is easy and requires no development effort.
It is even possible to fix bottlenecks in third-party CIS
applications that are already running.

Session State Storage Bottleneck
Microsoft provides three storage options for ASP.NET

Session State: InProc, StateServer and SqlServer.
InProc storage is intended for Web applications that

are running on a single Web server and puts user session
data within an ASP.NET application’s worker process.
Therefore, a Web garden configuration (a single server
multi-processor setup) with multiple worker processes
is not supported by InProc. Hence, InProc is ruled
out for most real-life environments involving two or
more Web servers.

StateServer is the second storage option. It is a server
process that keeps the user session data and therefore can
handle Web gardens. A StateServer can run on each Web
server or all Web servers can access a single common Sta-
teServer. However, both situations have serious scalability
problems. Keeping a single StateServer for the entire Web
farm is a single point of failure and also does not scale up
at all as more Web servers are added to the farm. Keeping
StateServer on each Web server requires the use of a “sticky
session” in the load balancer. Sticky sessions greatly limit
application scalability since the load balancer is forced to
send all user requests to their original Web server where the
ASP.NET Session State was created. This action is taken
although that particular server might be heavily loaded and
there may be another less-loaded server available to take
on this request.

The third storage option is SqlServer where ASP.NET
Session State is stored in an SQL Server database. How-
ever, this option also has major performance and scalability
problems because the SQL Server database cannot scale
up in the same manner as the Web farm.

Consequently, all Microsoft ASP.NET Session State
storage options are inadequate when it comes to scalabil-
ity. A hospital IT manager ends up with a situation where
adding more servers to the Web farm does not address
scalability due to bottlenecks in session state storage.

Distributed cache provides highly effective scalability.
Typical applications read data from the database 70 to
90 percent of the time and write data to the database
10 to 30 percent of the time. Interestingly, a CIS
application reads the same data over and over again
within a brief period of time. When data is cached on the
first read operation, all future reads for this data go to
the cache instead of the database server. This way, the
load on the database server is greatly reduced. Thus,
the database server is free to handle additional users,
thereby providing a great deal of scalability.

A distributed cache cluster can grow proportionately
to a Web farm because it doesn’t have the limitations
of a transactional database server, which is unable
to scale up in the same manner. If there are multiple
database servers clustered together then they must be
updated simultaneously, which reduces performance.
One database server operating within a two to three
server Web farm might be able to handle the load.
However, as a Web farm grows a single database
server can become unreliable and fail to meet a large
hospital’s IT requirements.

There are various reasons why a distributed cache
can scale. One is that most cache operations are single
item reads or writes (there are no transactions, query
parsing and compilation, or complex updates). Second,
is that application data is kept in an object form that an
application uses and no effort is required for recreating
these objects. Finally, a cache can afford to store data
differently than a database due to its nature, and
therefore it provides various caching topologies for data
storage. All of this combined enables a cache to scale
up very nicely compared to a database server.

For a 10-server Web farm, two cache servers in a
cluster might be adequate. But, for a 50-server Web
farm, it’s most likely that 10 cache servers are needed
if a 5:1 ratio between Web servers and cache servers
is required.

How Does Cache Scale?	

www.healthmgttech.com	 HEALTH MANAGEMENT TECHNOLOGY	 December 2008	 17

 Postscript

 DUMMY

 MECHANICAL

 Sign-Off

 PRINT PROOF

 NEW PDF

 REVISED PDF

HMT
PG.17

 CIRCLE/RS#

 LIT#

 SHOWLINE

 I/O CHECK

 PROD MGR

Nelson Publishing

2500 Tamiami Tr N

Nokomis, FL 34275

1-800-226-6113

Hospital Information Systems

With the help of distributed caching for storing user
session data, hospital IT management can stop worrying
about its CIS applications not being able to scale effectively
by simply installing additional Web servers to the farm and
adding the required number of cache servers to the cache
cluster to scale up to higher levels.

Distributed caching also provides hospital IT man-
agement data center disaster replication and thin client
capability for grid computing. When a hospital data center
goes down, users are immediately switched to the disaster
recovery center and their user sessions are instantaneously
available. The industry offers several brands of distributed
caching software. By implementing distributed caching,
scalability is achieved via the clustering of session caching
servers.

Conclusion
Hospital CIS applications developed as Web applica-

tions either in ASP.NET or Java lack critical scalability
to handle peak loads and user increases that are due to
inherent data storage and data access bottlenecks, which
also inherently limit database servers.

Scalability, however, based on distributed caching
provides the vital balancing act for CIS applications. User
session data is temporary and needed only while users are
logged on and expires afterwards. Therefore, an in-memory
distributed cache is an extremely scalable option for storing
user session data.

The fewer trips to the database, whether for application
or user session data, the faster and more scalable a CIS
application becomes. As the load on the database server is
reduced, the server is able to handle that many more user
requests which helps scale an application. The end result
is an environment that has unlimited scalability, allowing
hospital IT to be immune from bottlenecks and severe
slowdowns.

Iqbal Khan is president of Alachisoft.
Contact him at iqbal@alachisoft.com.

Database Bottleneck
In addition to ASP.NET Session State storage limita-

tions, a CIS application also faces scalability issues when
it comes to accessing application data in the database.
Database trips are usually very expensive in terms of their
impact on performance and scalability of the application.
A CIS application usually makes a lot of database trips
for reading and writing patient related data. In fact, for
each user request, the application usually makes multiple
database trips. Consider how many different types of data
an application would fetch from the database just to show
information about a single patient. Plus, fetching each type
of data requires a separate database trip.

Thus, when an application makes so many database trips
for each user request, the database quickly becomes the
bottleneck as IT management tries to scale up. The higher
number of database trips per user request also means that
as the number of user requests increases, the number of
database trips will increase at a much faster rate. This will
make the database server a scalability bottleneck very
quickly and it will grind to a halt.

Buying more powerful hardware will only help slightly
in the beginning. Similarly, too many database servers
cannot be added in a database cluster, either. This is
because the nature of a database makes it very difficult to
grow a cluster.

Caching In User Session Data
Distributed caching has emerged as a powerful solution

to address this problem and is the ideal storage option for
both application data and user session data. A distributed
cache is an in-memory storage that can span multiple
servers and scale up very nicely. A distributed cache is
ideal for storing ASP.NET user session data. It can also be
used as a temporary cache for application data to reduce
expensive database trips that make a database a scalability
bottleneck.

ASP.NET comes with a pluggable user session storage
mechanism called Session State Provider (SSP). SSP allows
IT managers to replace the built-in session storage with
third-party storage solutions without any programming
effort; and many commercial grade distributed caching
solutions provide SSP plug-ins. This allows IT managers
to incorporate one of the commercial grade distributed
caching solutions and remove any storage bottleneck for
user session data.

HMT

