
© Copyright 2015 by Alachisoft. All rights reserved.

Alachisoft

Memcached vs. NCache

Comparison

For .NET & Java Applications

Memcached v1.4.21 vs. NCache 4.3 SP1

This document compares Memcached v1.4.21 and NCache 4.3 SP1. Read this comparison to:

 Understand Memcached and NCache major feature differences

 See how Memcached and NCache compare on qualitative aspects such as performance, scalability, high availability,

data reliability, and administration.

© Copyright 2015 by Alachisoft. All rights reserved.

Table of Content

Disclaimer ... 1
1 Executive Summary .. 2
2 Qualitative Differences Explained .. 5

2.1 Performance and Scalability .. 5
2.2 Cache Elasticity (High Availability) .. 7
2.3 Cache Topologies .. 8
2.4 WAN Replication ... 10
2.5 Cache Administration .. 11
2.6 Security & Encryption ... 13
2.7 Object Caching Features .. 14
2.8 Managing Data Relationships.. 15
2.9 Synchronization with Data Sources ... 16
2.10 Runtime Data Sharing ... 18
2.11 Cache Search (SQL-Like) .. 19
2.12 Data Grouping .. 20
2.13 Read-through, Write-through & Cache Loader ... 21
2.14 Cache Size Management (Evictions Policies) .. 22
2.15 ASP.NET & Java Web Sessions Caching .. 23
2.16 Third Party Integrations .. 25

3 Conclusion .. 28

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 1

Disclaimer

The comparison provided in this document is for the purpose of helping you get a better understanding of Memcached versus

NCache. Information obtained about Memcached is from the freely available downloads, documents, and forums.

We did not conduct any scientific benchmarks for performance and scalability of Memcached so our assessment about it may

be different from yours. NCache benchmarks are already published on our website (www.alachisoft.com) for you to see.

Additionally, we have made a conscious effort to be objective, honest, and accurate in our assessments in this document. But,

any information about Memcached could be unintentionally incorrect or missing, and we do not take any responsibility for it.

Instead, we strongly recommend that you do your own comparison of Memcached with NCache and arrive at your own

conclusions. We also encourage you to do performance benchmarks of both Memcached and NCache in your environment for

the same purpose.

http://www.alachisoft.com/

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 2

1 Executive Summary

This document compares Memcached v1.4.21 with NCache 4.3 SP1, and contrasts their significant differences. This comparison

focuses on all the major areas that a good in-memory distributed object caching system should provide.

Feature Memcached NCache

Performance & Scalability

- Cache Performance Please verify yourself Excellent

- Cache Scalability Please verify yourself Excellent

- Bulk Operations Partial support Full support

- Async Operations No support Full support

- Compression Partial support Full support

- Fast Compact Serialization No support Full support

- Indexes No support Full support

- Multiple NIC binding No support Full support

Cache Elasticity (High Availability)

- Dynamic Cache Cluster No support Full support

- Peer to Peer Architecture No support Full support

- Connection Failover No support Full support

- Dynamic Configuration No support Full support

- Multiple Clusters No support Full support

- Named Caches No support Full support

- Communication Protocols TCP TCP, REST (soon)

- Cluster Specific Events No support Full support

Cache Topologies

- .NET Clients Supported Full support

- Java Clients Supported Full support

- Local Cache Partial support Full support

- Client Cache (Near Cache) No support Full support

- Mirrored Cache No support Full support

- Replicated Cache No support Full support

- Partitioned Cache Partial support Full support

- Partitioned-Replica Cache No support Full support

WAN Replication

- Active – Passive No support Full support

- Active – Active No support Full support

- One Active – Multiple Passive No support No support (soon)

- 3 or More Active No support No support (soon)

- Conflict Resolution No support Full support

- De-duplication No support Full support

- Data Security No support Full support

Cache Administration

- Cache Admin (GUI Tool) No support Full support

- Cache Monitoring (GUI Tool) Partial support Full support

- PerfMon Counters No support Full support

- JMX Counters No support Full support

- Command Line Admin Tools Partial support Full support

- Admin and Monitoring API No support Full support

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 3

Security & Encryption

- Active Directory/LDAP Authentication No support Full support

- Authorization No support Full support

- Data Encryption No support Full support

- Secure Communication No support Full support

Object Caching Features

- Get, Add, Insert, Remove, Exists, Clear Cache Supported Full support

- Expirations Partial support Full support

- Lock & Unlock No support Full support

- Item Versioning No support Full support

- Multiple Object Versions No support Full support

- Streaming API No support Full support

Managing Data Relationships

- Key Based Dependency No support Full support

- Multi-Cache Key Dependency No support Full support

Synchronization with Data Sources

- SqlDependency (SQL Server) No support Full support

- OracleDependency (Oracle) No support Full support

- DbDependency (OLEDB) No support Full support

- File Based Dependency No support Full support

- Custom Dependency No support Full support

Runtime Data Sharing

- Item Level Events (onInsert/onRemove) No support Full support

- Cache Level Events (Add/Insert/Remove) No support Full support

- Custom Events (Fired by Apps) No support Full support

- Continuous Query No support Full support

Cache Search (SQL-Like)

- Object Query Language (OQL) No support Full support

- LINQ Queries No support Full support

Data Grouping

- Groups/Subgroups No support Full support

- Tags No support Full support

- Named Tags No support Full support

Read-through, Write-through & Cache Loader

- Read-through No support Full support

- Write-through No support Full support

- Write-behind No support Full support

- Reload Items with Read-through (Expiration, Db Sync) No support Full support

- Cache Startup Loader No support Full support

Cache Size Management (Evictions Policies)

- Max Cache Size (in MBs) Supported Full support

- Least Recently Used (LRU) Evictions Partial support Full support

- Least Frequently Used (LFU) Evictions No support Full support

- Priority Evictions No support Full support

- Do Not Evict Option No support Full support

ASP.NET & Java Web Sessions

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 4

- ASP.NET Sessions Partial support Full support

- ASP.NET Sessions (Multiple Data Centers) No official support Full support

- ASP.NET View State Cache No official support Full support

- ASP.NET Output Cache No support Full support

- Java Session Persistence No official support Full support

Third Party Integrations

- NHibernate 2nd Level Cache Partial support Full support

- Entity Framework 2nd Level Cache No support Full support

- Memcached Protocol Server No support Full support

- Memcached Smart Wrapper Supported Full support

- Hibernate 2nd Level Cache No support Full support

- Spring Integration No support Full support

- JCache API No support No support (soon)

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 5

2 Qualitative Differences Explained

2.1 Performance and Scalability

Performance is defined as how fast cache operations are performed at a normal transaction load. Scalability is defined as how

fast the same cache operations are performed under higher and higher transaction loads. NCache is extremely fast and

scalable.

See NCache benchmarks for details.

Feature Area Memcached NCache

Cache Performance Please verify this yourself.

Extremely good.

NCache uses its own light-weight socket-

level protocol for client/server and

server/server communication.

Cache Scalability Please verify this yourself.

In non-scientific testing, we’ve seen

Memcached to not scale very nicely and

as you increase load, the overall

performance drops.

Extremely good.

NCache provides linear scalability, means

as you add more nodes to the cluster

your performance increase in a linear

fashion.

Bulk Operations Partial support.

Only Bulk Get provided. No Bulk Add,

Update or Delete.

Full support.

Bulk Get, Add, Insert, and Remove. This

covers most of major cache operations

and gives great performance boost.

Provides for both .NET and Java.

Async Operations No support. Full support.

Async add, insert, and remove provided.

Async operation returns control to the

application and performs the cache

operation in the background. Improves

application performance greatly.

Provides for both .NET and Java.

Compression Partial support.

You have to specify this through the API

which means you cannot change it at

runtime without code change.

Full support.

Specify this along with object size

threshold and only items larger than the

threshold are compressed.

Compressing small objects yields no

benefit and actually slows things down.

http://www.alachisoft.com/resources/ncache-performance-benchmarks.html

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 6

Feature Area Memcached NCache

And, you can change this config at

runtime through “Hot Apply”.

Can keep both compressed and

uncompressed objects in the same cache.

Fast Compact Serialization No support.

Full support.

NCache lets you register your classes

with the cache through a GUI tool

(NCache Manager).

Then, NCache generates serialization

code and compiles it in-memory when

your application connects to the cache.

This code is then used to serialize objects

and it is almost 10 times faster than

regular .NET and Java serialization

(especially for larger objects).

Provides for both .NET and Java.

Indexes No support. Full support.

You can use NCache Manager (GUI tool)

to create indexes on any attributes of

.NET or Java objects.

NCache also creates indexes

automatically on Tags, Named Tags,

Groups, and Subgroups. Expiration and

eviction policies also use indexes.

NCache generates data extraction code

at connection time, compiles it in-

memory, and uses it for all data

extraction instead of .NET and Java

Reflection. This is much faster.

Multiple NICs No support. Full support.

You can assign two NICs to a cache

server. One can be used for clients to talk

to the cache server and second for

multiple cache servers in the cluster to

talk to each other. Improves your data

bandwidth scalability greatly.

You can also assign a specific NIC for a

cache client to use for talking to the

cache server.

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 7

2.2 Cache Elasticity (High Availability)

Cache elasticity means how flexible the cache is at runtime. Are you able to perform the following operations at runtime

without any down time for the cache or your application?

1. Add or remove cache servers at runtime without stopping the cache.

2. Make cache config changes without stopping the cache

3. Add or remove web/application servers without stopping the cache

4. Have failover support in case any server goes down (meaning are cache clients are able to continue working

seamlessly).

This is an area where Memcached is really weak. In fact, it doesn’t provide any support for any of these things. But, NCache is

known for its strength in this area. NCache provides a self-healing dynamic cache clustering that makes NCache highly elastic.

Read more about it at dynamic clustering.

Feature Area Memcached NCache

Dynamic Cache Cluster No support.

In fact, Memcached has no cluster at all.

Each cache server is stand-alone and

cannot be added or removed at runtime

to your application.

Full support.

NCache is highly dynamic and lets you

add or remove cache servers at runtime

without any interruption to the cache or

your application

Data is automatically rebalanced (called

state transfer) at runtime without any

interruption or performance degradation.

NCache clients keep on communicating

with cache servers, independent of state

of server. Clusters ensure execution of

client operations even when data

balancing is in process.

Peer to peer architecture No support.

No cluster at all.

Full support.

This means that even for in-memory

cache, there is no “master” or “slave”

nodes in the cluster. There is a “primary

coordinator” node that is the senior most

node.

And, if it goes down, the next senior most

node automatically becomes the primary

coordinator.

Connection Failover No support.

No support. If any cache server goes

down, your entire cache is down and this

could mean that your application also

stops working.

Full support.

When a cache server goes down, the

NCache clients automatically continue

working with other servers in the cluster

and no interruption is caused.

Data of failed node is automatically

http://www.alachisoft.com/ncache/dynamic-clustering.html

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 8

Feature Area Memcached NCache

redistributed between remaining servers

in cluster (If cluster topology has replicas

of servers)

Cluster auto-manages itself by

rebalancing its data, assigning replicas

and even redistributed data is replicated

to new assigned node’s replica

automatically, all at runtime without

causing any interruption.

Dynamic Configuration No support.

All configurations must be defined

before cache starts or the cache is

restarted for changes to take effect.

Full support.

‘Hot Apply’ feature is provided to change

cluster configuration at runtime, without

any need of restarting the server/cluster.

Reconfigurable options include most of

cluster configurations including cache

size, eviction ratio, etc.

Multiple Clusters No support. Full support.

NCache allows you to create multiple

cache clusters of different configuration

and sizes on same set of cache servers.

Named Caches No support. Full support.

NCache allows you to create multiple

named caches on the same set of cache

servers.

Communication Protocol TCP Binary TCP

REST API (coming soon)

Memcached Protocol Server

Cluster Specific Events No support. Full support.

NCache provides .NET and Java events

about changes in the cluster like:

MemberJoined, MemberLeft,

CacheStopped, etc.

2.3 Cache Topologies

Cache Topologies determine data storage and client connection strategy. There are different topologies for different type of

uses.

Read more details at NCache caching topologies.

http://www.alachisoft.com/ncache/caching-topology.html

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 9

Feature Area Memcached NCache

.NET Clients Supported.

Full support.

.NET clients are fully supported through a

socket-level binary protocol.

Java Clients Supported.

Full support.

Java clients are fully supported just like

.NET clients. Java clients use the same

socket-level binary protocol as .NET

clients to connect to the cache cluster.

Local Cache Partial support.

OutProc only. You can run Memcached

server on your web/application server

and use it as an out-of-process local

cache.

But, keep in mind that Memcached

officially supports Unix and not

Windows. Windows port is done by

independent third party and not blessed

officially. This may be an issue for .NET

applications that run on Windows.

Full support.

Both InProc and OutProc.

You can use NCache as InProc or

OutProc local cache. InProc is much

faster but your memory consumption is

higher if you have multiple application

processes.

OutProc is slightly slower but saves you

memory consumption because there is

only one cache copy per server.

Client Cache (Near Cache) No support.

Full support.

Client Cache is simply a local

InProc/OutProc cache on client machine

but one that stays connected and

synchronized with the distributed cache

cluster.

This way, the application really benefits

from this “closeness” without

compromising on data integrity.

Mirrored Cache No support. Full support.

Mirrored Cache is a 2-node active-

passive cache and data mirroring is done

asynchronously.

Replicated Cache No support. Full support.

Replicated Cache is active-active cache

where the entire cache is copied to each

cache server. Reads are super-fast and

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 10

Feature Area Memcached NCache

writes are done as atomic operations

within the cache cluster.

Partitioned Cache Partial support.

Limited support of static partitioning by

Memcached. All partitioning is done

inside clients’ application code and is

static. This means you cannot add or

remove cache servers at runtime. If any

cache server goes down, all its data is

lost and the application most likely has

to stop as well.

Full support.

You can create a dynamic Partitioned

Cache. All partitions are created and

clients are made aware all at runtime.

This allows you to add or remove cache

servers without any interruption.

Partitioned-Replica Cache No support. Full support.

Same as Partitioned Cache and is fully

dynamic except there is also a “replica”

for each partition kept at another cache

server for reliability.

Replica is created and data rebalanced

automatically at runtime.

Replication can be configured at cache

level as synchronous or asynchronous.

2.4 WAN Replication

WAN replication is an important feature for many customers whose applications are deployed in multiple data centers either

for disaster recovery purpose or for load balancing of regional traffic.

The idea behind WAN replication is that it must not slow down the cache in each geographical location due to the high latency

of WAN. NCache provides Bridge Topology to handle all of this. Read more about it at WAN replication.

Feature Area Memcached NCache

One Active - One Passive No support. Full support.

Bridge Topology Active-Passive

You can create a Bridge between the

active and passive sites. The active site

submits all updates to the Bridge which

then replicates them to the passive site.

One Active – One Passive No support. Full support.

Bridge Topology Active-Active

http://www.alachisoft.com/ncache/bridge-topology.html

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 11

Feature Area Memcached NCache

You can create a Bridge between two

active sites. Both submit their updates to

the Bridge which handles conflicts on last

update wins rule or a custom conflict

resolution handler provided by you.

Then, the Bridge ensures that both sites

have the same update.

One Active - Multiple Passive No support. No support (but coming soon).

3 or More Active No support. No support (but coming soon).

Conflict Resolution No support. Full support.

By default, “last update wins” algorithm is

used to resolve conflicts. But, you can

specify a “custom conflict resolution

handler” that is called to resolve conflict

by comparison content of both objects.

De-duplication No support. Full support.

NCache Bridge optimizes replication

queue by de-duplicating items. If the

same key is updated multiple times, it

only replicates the most recent update.

Data Security No support. Full support.

Uses VPN between data centers for

security. Additionally, can also encrypt

data with 3DES and AES algorithms

before transportation.

2.5 Cache Administration

Cache administration is a very important aspect of any distributed cache. A good cache should provide the following:

1. GUI based and command line tools for cache administration including cache creation and editing/updates.

2. GUI based tools for monitor the cache activities at runtime.

3. Cache statistics based on PerfMon (since for Windows PerfMon is the standard)

NCache provides powerful support in all these areas. Read more about it at cache administration and monitoring.

Feature Area Memcached NCache

Cache Admin GUI Tool No support.

No GUI tool provided with Memcached

Full support (advanced).

NCache Manager is a powerful GUI tool

http://www.alachisoft.com/ncache/admin-monitor-tools.html

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 12

Feature Area Memcached NCache

to configure and administer the cache.

Various third party tools are available but

we couldn’t find any that would allow

cache administration (e.g. create/edit

cache, start/stop cache, etc.)

for NCache. It gives you an explorer view

and lets you quickly administer the cache

including cache creation/editing and

many other functions.

Cache Monitoring GUI Tool Partial support.

Some GUI based stats are shown for

Memcached although not very elaborate.

Additionally, the stats are not shown in

PerfMon so they cannot be incorporated

into third-party tools and combined with

other non-Memcached stats for

comparison.

Full support (advanced).

NCache Monitor is a powerful GUI tool

for NCache. Its lets you monitor NCache

cluster wide activity from a single

location. It also lets you monitor all of

NCache clients from a single location.

And, you can incorporate non-NCache

PerfMon counters in it for comparison

with NCache stats. This real-time

comparison is often very important.

PerfMon Counters No support. Full support.

NCache provides a rich set of PerfMon

counters that can be seen from NCache

Manager, NCache Monitor, or any third

party tool that supports PerfMon

monitoring.

JMX No support. Full support.

NCache provides a rich set of JMX

counters for its Java clients that can be

seen from any third party tool that

supports JMX monitoring.

Command Line Admin Tools

Partial support.

Some basic tools are provided to

start/stop the cache. But, nothing

elaborate.

Full support.

NCache provides a rich set of command

line tools/utilities. You can create a cache,

add remote clients to it, add server nodes

to it, start/stop the cache, and much

more.

Admin and Monitoring API No support. Full support.

NCache provides .NET and Java API to

manage and monitor the caches & client.

Using this API you can stop/start the

cache, get the statistics of the connected

clients or get the health info of the cache

cluster.

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 13

Feature Area Memcached NCache

This API also includes event notification

for cluster changes.

2.6 Security & Encryption

Many applications deal with sensitive data or are mission critical and cannot allow the cache to be open to everybody.

Therefore, a good distributed cache provides restricted access based on authentication and authorization to classify people in

different groups of users. And, it should also allow data to be encrypted inside the client application process before it travels to

the distributed cache.

NCache provides strong support in all of these areas. See security and encryption features for details.

Feature Area Memcached NCache

Active Directory/LDAP Authentication No support.

Full support.

You can authenticate users against Active

Directory or LDAP. If security is enabled,

nobody can use the cache without

authentication and authorization.

Authorization No support.

Full support.

You can authorize users to as either

“users” or “admins”. Users can only

access the cache for read-write

operations while “admins” can administer

the cache.

Data Encryption No support.

Full support (3DES, 256AES, …)

You can enable encryption and NCache

automatically encrypts all items inside

the client process before sending them

to the cache.

And, this data is kept encrypted while in

the cache. And decryption also happens

automatically and transparently inside

the client process.

Currently, 3DES and 256AES encryptions

are provided and more are being added.

Secure Communication No support. Full support.

Through VPN. SSL/TLS is usually needed

for end-user applications whereas

NCache security is between app servers

http://www.alachisoft.com/ncache/security-encryption-features.html

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 14

Feature Area Memcached NCache

and the caching tier or between multiple

data centers. And, here VPN is the most

suitable way to secure the transport.

NCache also encrypts data (as mentioned

above) that adds to this in case you don’t

want to use VPN.

2.7 Object Caching Features

These are the most basic operations without which a distributed cache becomes almost unusable. These by no means cover all

the operations a good distributed cache should have.

Feature Area Memcached NCache

Get, Add, Insert, Remove, Exists, Clear

Cache

Supported.

Memcached provides the basic cache

operations such as Add, Get, Put,

Remove.

Full support.

NCache provides more variations of

these operations and therefore more

control to the user.

Expirations Partial support.

Only absolute expiration provided. You

can specify a date-time and Memcached

expires item at that time.

No sliding expiration is available.

Full support.

Absolute and Sliding expirations

They are both provided by NCache.

Absolute expiration is good for data that

is coming from the database and must

be expired after a known time because it

might become stale.

Sliding expiration means expire after a

period of inactivity and is good for

session and other temporary data that

must be removed once it is no longer

needed.

Lock & Unlock No support.

Full support.

NCache provides both of these. Lock is

used to exclusively lock a cached item so

nobody else can read or write it.

This item stays locked until either the

lock expires or it is unlocked. NCache

also has incorporated “lock/unlock”

features in “get” and “insert” calls.

“GetAndLock()” returns an item locked

and “InsertAndUnlock()” updates an

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 15

Feature Area Memcached NCache

item and also unlocks it in one call. This

speeds up the cache operations.

Item Versioning No support. Full support.

This feature allows NCache clients to

ensure that only one client can update an

item and all future updates will fail unless

they first fetch the latest version and then

update.

Multiple Object Versions No support. Full support.

NCache allows two different versions of

the same object/class to be stored in the

cache by different apps. Each app

retrieves its own version and the cache

keeps a superset.

Streaming API No support. Full support.

For large objects, NCache allows the

cache clients to fetch them in

“GetChunk()” manner and update them

in “AppendChunk()” manner. With this,

NCache clients can stream in or out large

objects from the cache.

2.8 Managing Data Relationships

Since most data being cached comes from relational databases, it has relationships among various data items. So, a good

cache should allow you to specify these relationships in the cache and then keep the data integrity. It should allow you to

handle one-to-one, one-to-many, and many-to-many data relationships in the cache automatically without burdening your

application with this task.

See more at managing data relationships.

Feature Area Memcached NCache

Key Based Dependency No support. Full support.

NCache provides full support for it. You

can specify one cached item A depends

on another cached item B which then

depends on a third cached item C.

Then, if C is ever updated or removed, B

is automatically removed from the cache

and that triggers the removal of A from

http://www.alachisoft.com/resources/articles/managing-data-relationships.html

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 16

Feature Area Memcached NCache

the cache as well. And, all of this is done

automatically by the cache.

With this feature, you can keep track of

one-to-one, one-to-many, and many-to-

many relationships in the cache and

invalidate cached items if their related

items are updated or removed.

Multi-Cache Key Dependency No support. Full support.

This is an extension of Key Based

Dependency except it allows you to

create this dependency across multiple

caches.

2.9 Synchronization with Data Sources

Database synchronization is a very important feature for any good distributed cache. Since most data being cached is coming

from a relational database, there are always situations where other applications or users might change the data and cause the

cached data to become stale.

To handle these situations, a good distributed cache should allow you to specify dependencies between cached items and data

in the database. Then, whenever that data in the database changes, the cache becomes aware of it and either invalidates its

data or reloads a new copy.

Additionally, a good distributed cache should allow you to synchronize the cache with non-relational data sources since real

life is full of those situations as well.

NCache provides a very powerful database synchronization feature. Read more about it at database synchronization.

Feature Area Memcached NCache

SqlDependency (SQL Server) No support. Full support.

NCache provides SqlDependency support

for SQL Server. You can associate a

cached item with a SQL statement based

dataset in SQL Server. Then whenever

that dataset changes (addition, updates,

or removal), SQL Server sends a .NET

event to NCache and NCache invalidates

this cached item.

This feature allows you to synchronize

the cache with SQL Server database. If

you have a situation where some

applications or users are directly

updating data in the database, you can

enable this feature to ensure that the

http://www.alachisoft.com/ncache/database-synchronization.html

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 17

Feature Area Memcached NCache

cache stays fresh.

OracleDependency (Oracle) No support. Full support.

NCache provides OracleDependency

support for Oracle. It works just like

SqlDependency but for Oracle. Whenever

data changes in the database, Oracle

notifies NCache through Oracle event

notification.

Just like SqlDependency, this feature

allows you to synchronize the cache with

Oracle database.

DbDependency No support. Full support.

NCache provides support for you to

synchronize the cache with any OLEDB

database. This synchronization is based

on polling and although it is not as real-

time as event based synchronization.

But it is much more efficient because in

one poll, NCache can synchronize

thousands of cached items instead of

receiving thousands of individual events

in SqlDependency.

File Based Dependency No support. Full support.

NCache allows you to specify a

dependency on an external file. Then

NCache monitors this file for any updates

and when that happens, NCache

invalidates the corresponding cached

item.

This allows you to keep the cached item

synchronized with a non-relational data

source.

Custom Dependency No support. Full support.

NCache allows you to implement a

custom dependency and register your

code with the cache cluster. Then,

NCache calls your code to monitor some

custom data source for any changes.

When changes happen, you fire a

dependency update within NCache which

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 18

Feature Area Memcached NCache

causes the corresponding cached item to

be removed from the cache.

This feature is good when you need to

synchronize the cached item with a non-

relational data source that cannot be

captured by a flat file. So, custom

dependency handles this case.

2.10 Runtime Data Sharing

Runtime data sharing has become an important use for distributed caches. More and more applications today need to share

data with other applications at runtime in an asynchronous fashion.

Previously, relational databases were used to share data among multiple applications but that requires constant polling by the

applications wanting to consume data. Then, message queues became popular because of their asynchronous features and

their persistence of events. And although message queues are great, they lack performance and scalability requirements of

today’s applications.

As a result, more and more applications are using in-memory distributed caches for event driven runtime data sharing. This

data sharing should be between multiple .NET applications or between .NET and Java applications.

NCache provides very powerful features to facilitate runtime data sharing. They are discussed below and compared with

Memcached. See runtime data sharing for details.

Feature Area Memcached NCache

Item Level Events

(onInsert/onRemove)

No support. Full support (fast).

These events are super-fast and scalable

due to NCache’s light-weight socket-

level protocol.

Cache Level Events

(Add/Insert/Remove)

No support. Full support.

NCache allows you to register callbacks

against cache level add, insert, and

update events.

Your callback is called when this happens

even if your application is remotely

connected to the cache.

Custom Events

(Fired by Apps)

No support. Full support.

NCache allows your applications to fire

custom events into the cache cluster.

And, other applications can register to be

notified for these events.

http://www.alachisoft.com/ncache/run-time-data-sharing.html

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 19

Feature Area Memcached NCache

This feature allows you to coordinate a

producer/consumer scenario where after

the producer has produced data, it

notifies all the consumers to consume it.

Continuous Query No support. Full support.

NCache provides a powerful Continuous

Query (CQ) feature. CQ lets you specify a

SQL-like query against which NCache

monitors the cache for any additions,

updates, or deletes. And, your application

is notified whenever this happens.

Think of this feature as being equivalent

to SqlDependency but for the cache and

not the database.

2.11 Cache Search (SQL-Like)

Distributed cache is frequently used to cache objects that contain data coming from a relational database. This data may be

individual objects or collections that are the result of some database query.

Either way, applications often want to fetch a subset of this data and if they have the ability to search the distributed cache

with a SQL-like query language and specify object attributes as part of the criteria, it makes the distributed cache much more

useful for them.

NCache provides powerful Object Query Language (OQL) for searching the cache with a SQL-like query. Read more about it at

Object Query Language for details.

Feature Area Memcached NCache

Object Query Language

(OQL)

No support. Full support.

NCache provides a rich Object Query

Language (OQL) with which you can

search the cache. Your search criteria can

now include object attributes (e.g.

cust.city = ‘New York’) and you

can also include Tags and Named Tags in

the query language.

The net benefit is that the cache is no

longer a black box that is only accessible

through key-value pair.

LINQ Queries No support. Full support.

NCache allows you to search the cache

with LINQ queries. LINQ is a popular

http://www.alachisoft.com/resources/articles/object-query-language-dist-cache.html

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 20

Feature Area Memcached NCache

object querying language in .NET and

NCache has implemented a LINQ

provider.

So, if you’re comfortable using LINQ, you

can search the cache the same way you

would with NCache’s own OQL.

2.12 Data Grouping

A distributed cache should be much more than a Hashtable with a (key, value) pair interface. It needs to meet the needs of real

life applications that expect to fetch and update data in groups and collections. In a relational database, SQL provides a very

powerful way to do all of this.

We’ve already explained how to search a distributed cache through OQL and LINQ. Now let’s discuss Groups, Tags, and Named

Tags. These features allow you to keep track of collections of data easily and even modify them.

Feature Area Memcached NCache

Groups/Subgroups No support. Full support.

NCache provides the ability for you to

group cached items in a group-subgroup

combination (or just group with no

subgroup).

You can later fetch or remove all items

belonging to a group. You can also fetch

just the keys and then only fetch subset

of them.

Tags No support. Full support.

NCache provides a concept called Tags. A

Tag is a string that you can assign to one

or more cached items. And one cached

item can be assigned multiple Tags. Tags

are specified at cache level.

And, later, you can fetch items belonging

to one or more Tags in order to

manipulate them.

You can also include Tags in Object

Query Language or LINQ search as part

of the criteria.

Named Tags No support. Full support.

NCache provides Named Tags feature

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 21

Feature Area Memcached NCache

where you can assign a “key” and “tag” to

one or more cached items. And, a single

cached item can get multiple Named

Tags.

Later, you can fetch items belonging to

one or more Named Tags. You can also

use Named Tags in OQL and LINQ

queries as part of the criteria.

2.13 Read-through, Write-through & Cache Loader

Many people use distributed cache as “cache on the side” where they fetch data directly from the database and put it in the

cache. Another approach is “cache through” where your application just asks the cache for the data. And, if the data isn’t there,

the distributed cache gets it from your data source.

The same thing goes for write-through. Write-behind is nothing more than a write-through where the cache is updated

immediately and the control returned to the client application. And, then the database or data source is updated

asynchronously so the application doesn’t have to wait for it.

NCache provides powerful capabilities in this area. See read-through & write-through for details.

Feature Area Memcached NCache

Read-through No support. Full support.

NCache allows you to implement

multiple read-through handlers and

register with the cache as “named

providers”. Then, the client can tell

NCache to use a specific read-through

upon a “cache miss”.

NCache also allows you to add read-

through handlers at runtime without

stopping the cache.

Write-through No support. Full support.

NCache allows you to implement

multiple write-through handlers and

register with NCache as “named

providers”. Then, the client can tell

NCache which write-through to use when

updating the data source.

You can also add write-through handlers

at runtime without stopping the cache.

Write-behind No support. Full support.

http://www.alachisoft.com/resources/articles/readthru-writethru-writebehind.html

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 22

Feature Area Memcached NCache

Write-behind is the same as write-

through except writing to the data source

is asynchronously done.

NCache updates the cache immediately

and queues up the database update and

a background thread processes it and

calls your write-through handler.

Reload Items at Expiration &

Database Synchronization

No support.

Full support.

If you’ve implemented a read-through

handler, NCache allows you to use it to

specify that whenever a cached item

expires.

Then, instead of removing it from the

cache, NCache should call your read-

through handler to read a new copy of

that object and update the cache with it.

You can specify the same when database

synchronization is enabled and a row in

the database is updated and a

corresponding cached item would have

been removed from the cache but is now

reloaded with the help of your read-

through.

Cache Startup Loader No support. Full support.

NCache lets you implement a Cache

Loader and register it with the cache

cluster. NCache then calls it to

prepopulate the cache upon startup.

CacheLoader is your code that reads data

from your data source/database.

2.14 Cache Size Management (Evictions Policies)

An in-memory distributed cache always has less storage space than a relational database. So, by design, a distributed cache is

supposed to cache a subset of the data which is really the “moving window” of a data set that the applications are currently

interested in.

This means that a distributed cache should allow you to specify how much memory it should consume and once it reaches that

size, the cache should evict some of the cached items. However, please keep in mind that if you’re caching something that

does not exist in the database (e.g. ASP.NET Sessions) then you need to do proper capacity planning to ensure that these

cached items (sessions in this case) are never evicted from the cache. Instead, they should be “expired” at appropriate time

based on their usage.

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 23

Feature Area Memcached NCache

Specify Cache Size

(in MBs)

Supported.

Supported.

LRU Evictions

(Least Recently Used)

Partial support.

At slab level and not at cache level.

Full support.

LFU Evictions

(Least Frequently Used)

No support.

Full support.

Priority Evictions No support.

Full support.

NCache also lets you specify a “do not

evict” priority for some cached items and

then they are not evicted.

Do Not Evict Option No support. Full support.

NCache lets you specify “do not evict”

option for the entire cache. Then, nothing

is evicted even when cache is full.

Instead, the client applications receive an

error stating that the cache is full when

they try to add data to the cache.

2.15 ASP.NET & Java Web Sessions Caching

ASP.NET applications need three things from a good distributed cache. And, they are ASP.NET Session State storage, ASP.NET

View State caching, and ASP.NET Output Cache.

ASP.NET Session State store must allow session replication in order to ensure that no session is lost even if a cache server goes

down. And, it must be fast and scalable so it is a better option than InProc, StateServer, and SqlServer options that Microsoft

provides out of the box. NCache has implemented a powerful ASP.NET Session State provider.

See ASP.NET Session State for details.

ASP.NET View State caching allows you to cache heavy View State on the web server so it is not sent as “hidden field” to the

user browser for a round-trip. Instead, only a “key” is sent. This makes the payload much lighter, speeds up ASP.NET response

time, and also reduces bandwidth pressure and cost for you. NCache provides a feature-rich View State cache.

See ASP.NET View State for details.

Third is ASP.NET Output Cache. For .NET 4.0, Microsoft has changed the ASP.NET Output Cache architecture and now allows

third-party distributed caches to be plug-in. ASP.NET Output Cache saves the output of an ASP.NET page so the page doesn’t

have to execute next time. And, you can either cache the entire page or portions of the page. NCache has implemented a

provider for ASP.NET Output Cache.

Feature Area Memcached NCache

ASP.NET Sessions No official support.

Full support (advanced).

http://www.alachisoft.com/ncache/session-index.html
http://www.alachisoft.com/ncache/viewstate-caching.html

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 24

Feature Area Memcached NCache

Some third party implementation

available.

No session replication and therefore no

high availability possible.

NCache has implemented an ASP.NET

Session State Provider (SSP) for .NET

2.0+. You can use it without any code

changes. Just change web.config.

NCache also provides flexible session

locking options to handle robots

flooding an ASP.NET website.

NCache provides intelligent session

replication and is much faster than any

database storage for sessions.

ASP.NET Sessions

(Multi-Site)

No support. Full support.

NCache allows you to share sessions

across multiple data centers.

This serves situations where you don’t

want to replicate all sessions to each data

center but want the ability to overflow

traffic from one data center to another

without losing your ASP.NET sessions.

The session moves from one data center

to the next as the user moves.

ASP.NET View State Cache No official support.

Some third party implementation

available.

No View State replication and no

association with sessions.

Full support (advanced).

Yes. NCache has an ASP.NET View State

caching module. Use it without any code

changes. Just modify config file.

Here are some advanced features

supported by NCache:

- Group-level policy

- Associate pages to groups

- Link View State to sessions

- Max View State count per user

- More…

ASP.NET Output Cache No support. Supported.

NCache has an ASP.NET Output Cache

provider implemented. It allows you to

cache ASP.NET page output in a

distributed cache and share it in a web

farm.

Java Session Persistence No official support. Full support.

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 25

Feature Area Memcached NCache

NCache has implemented a Java Servlet

Session Provider (Java Servlet 2.3+). You

can use it without any code changes. Just

change web.xml

NCache provides intelligent session

replication and is much faster than any

database storage for sessions.

2.16 Third Party Integrations

Memcached is an open-source in-memory distributed caching solution which helps speed up web applications by taking

pressure off the database. Memcached is used by many of the internet’s biggest websites and has been merged with other

technologies.

NCache implements Memcached protocol to enable users with existing Memcached implementations to easily migrate to

NCache. No code change required for this.

See Memcached Wrapper for details.

NHibernate is a very powerful and popular object-relational mapping engine. And, fortunately, it also has a second level cache

provider architecture that allows you to plug-in a third-party cache without making any code changes to the NHibernate

application. NCache has implemented this NHibernate second level cache provider.

See NHibernate second level cache for details.

Similarly, Entity Framework from Microsoft is also a very popular object-relational mapping engine. And, although Entity

Framework doesn’t have nice second level cache provider architecture like NHibernate, NCache has nonetheless implemented

a second level cache for Entity Framework.

See Entity Framework second level cache for details.

Feature Area Memcached NCache

NHibernate

2
nd

 Level Cache

Partial support.

No cache replication.

Full support.

NCache provides a NHibernate 2
nd

 Level

Cache provider that you can plug-in

through web.config or app.config

changes.

NCache has also implemented database

synchronization feature in this so you can

specify which classes should be

synchronized with the database. NCache

lets you specify SqlDependency or

DbDependency for this.

Entity Framework

2
nd

 Level Cache

No support. Full support.

Custom ADO.NET Provider

NCache has implemented a behind-the-

scene second level cache for Entity

http://www.alachisoft.com/ncache/memcached-wrapper.html
http://www.alachisoft.com/ncache/nhibernate-l2cache-index.html
http://www.alachisoft.com/ncache/entity-framework.html

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 26

Feature Area Memcached NCache

Framework. You can plug-in NCache to

your EF application, run it in analysis

mode, and quickly see all the queries

being used by it. Then, you can decide

which queries should be cached and

which ones skipped.

You can also specify which queries

should be synchronized with the

database through SqlDependency.

Memcached

Protocol Server

Supported. Full support.

NCache has implemented Memcached

protocol fully. This means you can plug-

in NCache as a distributed cache as a

replacement of Memcached.

Two ways are offered to use Memcached

applications with NCache.

Memcached Pug-In: All the popular Open

Source .NET Memcached client libraries

have been implemented for NCache.

Memcached Gateway: Using this you can

store your application data from any

application that use the Memcached.

Memcached Smart Wrapper

No support. Full support.

NCache has implemented the popular

.NET and Java Memcached client libraries

which in-turn calls NCache. This allows

you to plug-in Memcached client library

to your application without any code

change or recompilation.

Hibernate

2
nd

 Level Cache

Supported. Full support.

NCache provides Hibernate 2
nd

 Level

Cache provider that you can plug-in to

your Java app without any code changes.

NCache has also implemented database

synchronization feature in this so you can

specify which classes should be

synchronized with the database. NCache

lets you specify OracleDependency or

DbDependency for this.

Spring Integration No official support. Full support.

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 27

Feature Area Memcached NCache

JCache API No support. No support (but coming soon).

Memcached vs. NCache Comparison © Copyright 2015 by Alachisoft 28

3 Conclusion

As you can see in a very detailed fashion, we have outlined all of NCache features and all the corresponding Memcached

features or a lack thereof. We hope this document helps you get a better understanding of Memcached versus NCache.

Please note that the true cost of ownership for a distributed cache is not just the price of it. It is the cost to your business. The

most important thing for many customers is that they cannot afford unscheduled downtime (especially during peak hours).

And, this is where an elastic cache like NCache truly shines.

Additionally, all those caching features that NCache provides are intended to give you total control over the cache and allow

you to cache all types of data and not just simple data.

Please read more about NCache and also feel free to download a fully working 60-day trial of NCache from:

- NCache details

- Download

http://www.alachisoft.com/ncache/
http://www.alachisoft.com/download.html#ncache

